Advertisement

An Overview of Rodent Models of Obesity and Type 2 Diabetes

  • Thomas A. LutzEmail author
Protocol
  • 70 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2128)

Abstract

Many animal models that are currently used in appetite and obesity research share at least some main features of human obesity and its comorbidities. Hence, even though no animal model replicates all aspects of “common” human obesity, animal models are imperative in studying the control of energy balance and reasons for its imbalance that may eventually lead to overt obesity. The most frequently used animal models are small rodents that may be based on mutations or manipulations of individual or several genes and on the exposure to obesogenic diets or other manipulations that predispose the animals to gaining or maintaining excessive weight. Characteristics include hyperphagia or changes in energy metabolism and at least in some models the frequent comorbidities of obesity, like hyperglycemia, insulin resistance, or diabetes-like syndromes. Some of the most frequently used animal models of obesity research involve animals with monogenic mutations of the leptin pathway which in fact are useful to study specific mechanistic aspects of eating controls, but typically do not recapitulate “common” obesity in the human population. Hence, this review will mention advantages and disadvantages of respective animal models in order to build a basis for the most appropriate use in biomedical research.

Key words

Monogenetic models Polygenetic models Surgical models Diabetes mellitus 

Notes

Acknowledgment

I gratefully acknowledge the financial support from many funding sources that helped me perform my research with some of the animal models mentioned here, in particular the Swiss National Science Foundation, the National Institutes of Health, the EU Frame Program 7, and the University of Zurich.

References

  1. 1.
    Lutz TA, Woods SC (2012) Overview of animal models of obesity. Curr Protoc Pharmacol Chapter 5:Unit5 61.  https://doi.org/10.1002/0471141755.ph0561s58
  2. 2.
    Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schurmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Muller TD, Tschop MH (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol.  https://doi.org/10.1038/nrendo.2017.161
  3. 3.
    Osto M, Lutz TA (2015) Translational value of animal models of obesity-Focus on dogs and cats. Eur J Pharmacol 759:240–252.  https://doi.org/10.1016/j.ejphar.2015.03.036CrossRefPubMedGoogle Scholar
  4. 4.
    Mayer J, Bates MW, Dickie MM (1951) Hereditary diabetes in genetically obese mice. Science 113(2948):746–747CrossRefGoogle Scholar
  5. 5.
    Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14(3):141–148CrossRefGoogle Scholar
  6. 6.
    Bray GA, York DA (1979) Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev 59(3):719–809CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432.  https://doi.org/10.1038/372425a0CrossRefGoogle Scholar
  8. 8.
    Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269(5223):546–549CrossRefGoogle Scholar
  9. 9.
    Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546CrossRefGoogle Scholar
  10. 10.
    Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269(5223):540–543CrossRefGoogle Scholar
  11. 11.
    Friedman JM (1998) Leptin, leptin receptors, and the control of body weight. Nutr Rev 56(2 Pt 2):s38–s46. discussion s54–75PubMedGoogle Scholar
  12. 12.
    O'Rahilly S (2009) Human genetics illuminates the paths to metabolic disease. Nature 462(7271):307–314.  https://doi.org/10.1038/nature08532CrossRefPubMedGoogle Scholar
  13. 13.
    Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271(5251):994–996CrossRefGoogle Scholar
  14. 14.
    Bray GA (1977) The Zucker-fatty rat: a review. Fed Proc 36(2):148–153PubMedGoogle Scholar
  15. 15.
    Takaya K, Ogawa Y, Hiraoka J, Hosoda K, Yamori Y, Nakao K, Koletsky RJ (1996) Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat Genet 14(2):130–131.  https://doi.org/10.1038/ng1096-130CrossRefPubMedGoogle Scholar
  16. 16.
    Friedman JM (1997) Leptin, leptin receptors and the control of body weight. Eur J Med Res 2(1):7–13PubMedGoogle Scholar
  17. 17.
    Wu-Peng XS, Chua SC Jr, Okada N, Liu SM, Nicolson M, Leibel RL (1997) Phenotype of the obese Koletsky (f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr): evidence for deficient plasma-to-CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 46(3):513–518CrossRefGoogle Scholar
  18. 18.
    Crouse JA, Elliott GE, Burgess TL, Chiu L, Bennett L, Moore J, Nicolson M, Pacifici RE (1998) Altered cell surface expression and signaling of leptin receptors containing the fatty mutation. J Biol Chem 273(29):18365–18373CrossRefGoogle Scholar
  19. 19.
    da Silva BA, Bjorbaek C, Uotani S, Flier JS (1998) Functional properties of leptin receptor isoforms containing the gln-->pro extracellular domain mutation of the fatty rat. Endocrinology 139(9):3681–3690CrossRefGoogle Scholar
  20. 20.
    Zierath JR, Ryder JW, Doebber T, Woods J, Wu M, Ventre J, Li Z, McCrary C, Berger J, Zhang B, Moller DE (1998) Role of skeletal muscle in thiazolidinedione insulin sensitizer (PPARgamma agonist) action. Endocrinology 139(12):5034–5041CrossRefGoogle Scholar
  21. 21.
    Bates SH, Kulkarni RN, Seifert M, Myers MG Jr (2005) Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis. Cell Metab 1(3):169–178.  https://doi.org/10.1016/j.cmet.2005.02.001CrossRefPubMedGoogle Scholar
  22. 22.
    Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E, Neel BG, Schwartz MW, Myers MG Jr (2003) STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421(6925):856–859.  https://doi.org/10.1038/nature01388. nature01388 [pii]CrossRefPubMedGoogle Scholar
  23. 23.
    Allison MB, Myers MG Jr (2014) 20 years of leptin: connecting leptin signaling to biological function. J Endocrinol 223(1):T25–T35.  https://doi.org/10.1530/joe-14-0404CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB, Elmquist JK (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23(4):775–786CrossRefGoogle Scholar
  25. 25.
    Yaswen L, Diehl N, Brennan MB, Hochgeschwender U (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5(9):1066–1070.  https://doi.org/10.1038/12506CrossRefPubMedGoogle Scholar
  26. 26.
    Challis BG, Coll AP, Yeo GS, Pinnock SB, Dickson SL, Thresher RR, Dixon J, Zahn D, Rochford JJ, White A, Oliver RL, Millington G, Aparicio SA, Colledge WH, Russ AP, Carlton MB, O'Rahilly S (2004) Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36). Proc Natl Acad Sci U S A 101(13):4695–4700.  https://doi.org/10.1073/pnas.0306931101CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mankowska M, Krzeminska P, Graczyk M, Switonski M (2017) Confirmation that a deletion in the POMC gene is associated with body weight of Labrador Retriever dogs. Res Vet Sci 112:116–118.  https://doi.org/10.1016/j.rvsc.2017.02.014CrossRefPubMedGoogle Scholar
  28. 28.
    Raffan E, Dennis RJ, O'Donovan CJ, Becker JM, Scott RA, Smith SP, Withers DJ, Wood CJ, Conci E, Clements DN, Summers KM, German AJ, Mellersh CS, Arendt ML, Iyemere VP, Withers E, Soder J, Wernersson S, Andersson G, Lindblad-Toh K, Yeo GS, O'Rahilly S (2016) A deletion in the canine pomc gene is associated with weight and appetite in obesity-prone labrador retriever dogs. Cell Metab 23(5):893–900.  https://doi.org/10.1016/j.cmet.2016.04.012CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88(1):131–141CrossRefGoogle Scholar
  30. 30.
    Mul JD, van Boxtel R, Bergen DJ, Brans MA, Brakkee JH, Toonen PW, Garner KM, Adan RA, Cuppen E (2011) Melanocortin receptor 4 deficiency affects body weight regulation, grooming behavior, and substrate preference in the rat. Obesity (Silver Spring).  https://doi.org/10.1038/oby.2011.81
  31. 31.
    Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T (1992) Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41(11):1422–1428CrossRefGoogle Scholar
  32. 32.
    Moran TH (2008) Unraveling the obesity of OLETF rats. Physiol Behav 94(1):71–78.  https://doi.org/10.1016/j.physbeh.2007.11.035. S0031-9384(07)00454-4 [pii]CrossRefPubMedGoogle Scholar
  33. 33.
    Moran TH, Bi S (2006) Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors. Philos Trans R Soc Lond B Biol Sci 361(1471):1211–1218.  https://doi.org/10.1098/rstb.2006.1857. 565077G7K5T6246K [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Smith GP (2006) Ontogeny of ingestive behavior. Dev Psychobiol 48(5):345–359.  https://doi.org/10.1002/dev.20145CrossRefPubMedGoogle Scholar
  35. 35.
    Lo CM, King A, Samuelson LC, Kindel TL, Rider T, Jandacek RJ, Raybould HE, Woods SC, Tso P (2010) Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity. Gastroenterology.  https://doi.org/10.1053/j.gastro.2010.01.044. S0016-5085(10)00150-2 [pii]
  36. 36.
    de Krom M, van der Schouw YT, Hendriks J, Ophoff RA, van Gils CH, Stolk RP, Grobbee DE, Adan R (2007) Common genetic variations in CCK, leptin, and leptin receptor genes are associated with specific human eating patterns. Diabetes 56(1):276–280.  https://doi.org/10.2337/db06-0473. 56/1/276 [pii]CrossRefPubMedGoogle Scholar
  37. 37.
    Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC (2004) Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes 53(6):1509–1516CrossRefGoogle Scholar
  38. 38.
    Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD (2015) Amylin: pharmacology, physiology, and clinical potential. Pharmacol Rev 67(3):564–600.  https://doi.org/10.1124/pr.115.010629CrossRefPubMedGoogle Scholar
  39. 39.
    Matveyenko AV, Butler PC (2006) Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J 47(3):225–233CrossRefGoogle Scholar
  40. 40.
    Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91(3):795–826.  https://doi.org/10.1152/physrev.00042.2009CrossRefPubMedGoogle Scholar
  41. 41.
    Levin BE, Dunn-Meynell AA (2000) Defense of body weight against chronic caloric restriction in obesity-prone and -resistant rats. Am J Physiol Regul Integr Comp Physiol 278(1):R231–R237CrossRefGoogle Scholar
  42. 42.
    Levin BE, Dunn-Meynell AA (2002) Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 282(1):R46–R54CrossRefGoogle Scholar
  43. 43.
    Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE (1997) Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol 273(2 Pt 2):R725–R730PubMedGoogle Scholar
  44. 44.
    Levin BE, Triscari J, Sullivan AC (1986) The effect of diet and chronic obesity on brain catecholamine turnover in the rat. Pharmacol Biochem Behav 24(2):299–304CrossRefGoogle Scholar
  45. 45.
    Levin BE, Dunn-Meynell AA, McMinn JE, Alperovich M, Cunningham-Bussel A, Chua SC Jr (2003) A new obesity-prone, glucose-intolerant rat strain (F.DIO). Am J Physiol Regul Integr Comp Physiol 285(5):R1184–R1191.  https://doi.org/10.1152/ajpregu.00267.2003CrossRefPubMedGoogle Scholar
  46. 46.
    Levin BE, Dunn-Meynell AA, Ricci MR, Cummings DE (2003) Abnormalities of leptin and ghrelin regulation in obesity-prone juvenile rats. Am J Physiol Endocrinol Metab 285(5):E949–E957.  https://doi.org/10.1152/ajpendo.00186.2003. 00186.2003 [pii]CrossRefPubMedGoogle Scholar
  47. 47.
    Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB (2008) Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab 7(2):179–185.  https://doi.org/10.1016/j.cmet.2007.12.001. S1550-4131(07)00374-9 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Gorski JN, Dunn-Meynell AA, Levin BE (2007) Maternal obesity increases hypothalamic leptin receptor expression and sensitivity in juvenile obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 292(5):R1782–R1791.  https://doi.org/10.1152/ajpregu.00749.2006CrossRefPubMedGoogle Scholar
  49. 49.
    Peterson RG, Jackson CV, Zimmerman K, de Winter W, Huebert N, Hansen MK (2015) Characterization of the ZDSD rat: a translational model for the study of metabolic syndrome and type 2 diabetes. J Diabetes Res 2015:487816.  https://doi.org/10.1155/2015/487816CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Reinwald S, Peterson RG, Allen MR, Burr DB (2009) Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models. Am J Physiol Endocrinol Metab 296(4):E765–E774.  https://doi.org/10.1152/ajpendo.90937.2008CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rothwell NJ, Stock MJ (1979) Combined effects of cafeteria and tube-feeding on energy balance in the rat. Proc Nutr Soc 38(1):5APubMedGoogle Scholar
  52. 52.
    Rogers PJ, Blundell JE (1984) Meal patterns and food selection during the development of obesity in rats fed a cafeteria diet. Neurosci Biobehav Rev 8(4):441–453CrossRefGoogle Scholar
  53. 53.
    Perez C, Fanizza LJ, Sclafani A (1999) Flavor preferences conditioned by intragastric nutrient infusions in rats fed chow or a cafeteria diet. Appetite 32(1):155–170.  https://doi.org/10.1006/appe.1998.0182CrossRefPubMedGoogle Scholar
  54. 54.
    Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE (2004) Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53(5):1253–1260CrossRefGoogle Scholar
  55. 55.
    Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, Lefevre AL, Cruciani-Guglielmacci C, Magnan C, Yu F, Niswender K, Irani BG, Holland WL, Clegg DJ (2009) Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 119(9):2577–2589.  https://doi.org/10.1172/jci36714CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM, D'Alessio D, Tso P, Seeley RJ, Woods SC (2011) Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav 103(1):10–16.  https://doi.org/10.1016/j.physbeh.2011.01.010CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23(2):270–299.  https://doi.org/10.1017/s0954422410000168CrossRefPubMedGoogle Scholar
  58. 58.
    Woods SC, D'Alessio DA, Tso P, Rushing PA, Clegg DJ, Benoit SC, Gotoh K, Liu M, Seeley RJ (2004) Consumption of a high-fat diet alters the homeostatic regulation of energy balance. Physiol Behav 83(4):573–578.  https://doi.org/10.1016/j.physbeh.2004.07.026. S0031-9384(04)00411-1 [pii]CrossRefPubMedGoogle Scholar
  59. 59.
    Koch CE, Lowe C, Pretz D, Steger J, Williams LM, Tups A (2014) High-fat diet induces leptin resistance in leptin-deficient mice. J Neuroendocrinol 26(2):58–67.  https://doi.org/10.1111/jne.12131CrossRefPubMedGoogle Scholar
  60. 60.
    Garcia-Caceres C, Yi CX, Tschop MH (2013) Hypothalamic astrocytes in obesity. Endocrinol Metab Clin North Am 42(1):57–66.  https://doi.org/10.1016/j.ecl.2012.11.003CrossRefPubMedGoogle Scholar
  61. 61.
    Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW (2013) Hypothalamic inflammation: marker or mechanism of obesity pathogenesis? Diabetes 62(8):2629–2634.  https://doi.org/10.2337/db12-1605CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschop MH, Schwartz MW (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122(1):153–162.  https://doi.org/10.1172/jci59660CrossRefPubMedGoogle Scholar
  63. 63.
    Tamashiro KL, Moran TH (2010) Perinatal environment and its influences on metabolic programming of offspring. Physiol Behav 100(5):560–566.  https://doi.org/10.1016/j.physbeh.2010.04.008CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Bouret SG (2009) Early life origins of obesity: role of hypothalamic programming. J Pediatr Gastroenterol Nutr 48(Suppl 1):S31–S38.  https://doi.org/10.1097/MPG.0b013e3181977375. 00005176-200903001-00006 [pii]CrossRefPubMedGoogle Scholar
  65. 65.
    Le Foll C, Irani BG, Magnan C, Dunn-Meynell A, Levin BE (2009) Effects of maternal genotype and diet on offspring glucose and fatty acid-sensing ventromedial hypothalamic nucleus neurons. Am J Physiol Regul Integr Comp Physiol 297(5):R1351–R1357.  https://doi.org/10.1152/ajpregu.00370.2009CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Levin BE, Dunn-Meynell AA (2002) Maternal obesity alters adiposity and monoamine function in genetically predisposed offspring. Am J Physiol Regul Integr Comp Physiol 283(5):R1087–R1093.  https://doi.org/10.1152/ajpregu.00402.2002CrossRefPubMedGoogle Scholar
  67. 67.
    Levin BE, Govek E (1998) Gestational obesity accentuates obesity in obesity-prone progeny. Am J Physiol 275(4 Pt 2):R1374–R1379PubMedGoogle Scholar
  68. 68.
    Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL, Smith MS, Coleman K, Grove KL (2010) Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci 30(10):3826–3830.  https://doi.org/10.1523/JNEUROSCI.5560-09.2010. 30/10/3826 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sullivan EL, Smith MS, Grove KL (2010) Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood. Neuroendocrinology.  https://doi.org/10.1159/000322038. 000322038 [pii]
  70. 70.
    Tamashiro KL, Terrillion CE, Hyun J, Koenig JI, Moran TH (2009) Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes 58(5):1116–1125.  https://doi.org/10.2337/db08-1129CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    West DB, Diaz J, Woods SC (1982) Infant gastrostomy and chronic formula infusion as a technique to overfeed and accelerate weight gain of neonatal rats. J Nutr 112(7):1339–1343CrossRefGoogle Scholar
  72. 72.
    Faust IM, Johnson PR, Hirsch J (1980) Long-term effects of early nutritional experience on the development of obesity in the rat. J Nutr 110(10):2027–2034CrossRefGoogle Scholar
  73. 73.
    Schmidt I, Fritz A, Scholch C, Schneider D, Simon E, Plagemann A (2001) The effect of leptin treatment on the development of obesity in overfed suckling Wistar rats. Int J Obes Relat Metab Disord 25(8):1168–1174.  https://doi.org/10.1038/sj.ijo.0801669CrossRefPubMedGoogle Scholar
  74. 74.
    Morris MJ, Velkoska E, Cole TJ (2005) Central and peripheral contributions to obesity-associated hypertension: impact of early overnourishment. Exp Physiol 90(5):697–702.  https://doi.org/10.1113/expphysiol.2005.030783CrossRefPubMedGoogle Scholar
  75. 75.
    West DB, Diaz J, Roddy S, Woods SC (1987) Long-term effects on adiposity after preweaning nutritional manipulations in the gastrostomy-reared rat. J Nutr 117(7):1259–1264CrossRefGoogle Scholar
  76. 76.
    Akash MS, Rehman K, Chen S (2013) Goto-Kakizaki rats: its suitability as non-obese diabetic animal model for spontaneous type 2 diabetes mellitus. Curr Diabetes Rev 9(5):387–396CrossRefGoogle Scholar
  77. 77.
    Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB (1993) Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem 268(30):22243–22246PubMedGoogle Scholar
  78. 78.
    Thorburn AW, Baldwin ME, Rosella G, Zajac JD, Fabris S, Song S, Proietto J (1999) Features of syndrome X develop in transgenic rats expressing a non-insulin responsive phosphoenolpyruvate carboxykinase gene. Diabetologia 42(4):419–426.  https://doi.org/10.1007/s001250051174CrossRefPubMedGoogle Scholar
  79. 79.
    Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671CrossRefGoogle Scholar
  80. 80.
    Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289(5487):2122–2125CrossRefGoogle Scholar
  81. 81.
    Penicaud L, Larue-Achagiotis C, Le Magnen J (1983) Endocrine basis for weight gain after fasting or VMH lesion in rats. Am J Physiol 245(3):E246–E252PubMedGoogle Scholar
  82. 82.
    King BM (2006) The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav 87(2):221–244.  https://doi.org/10.1016/j.physbeh.2005.10.007. S0031-9384(05)00482-8 [pii]CrossRefPubMedGoogle Scholar
  83. 83.
    King BM (1991) Ventromedial hypothalamic obesity: a reexamination of the irritative hypothesis. Neurosci Biobehav Rev 15(3):341–347CrossRefGoogle Scholar
  84. 84.
    Sims JS, Lorden JF (1986) Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav Brain Res 22(3):265–281CrossRefGoogle Scholar
  85. 85.
    Tokunaga K, Matsuzawa Y, Fujioka S, Kobatake T, Keno Y, Odaka H, Matsuo T, Tarui S (1991) PVN-lesioned obese rats maintain ambulatory activity and its circadian rhythm. Brain Res Bull 26(3):393–396CrossRefGoogle Scholar
  86. 86.
    Asarian L, Geary N (2007) Estradiol enhances cholecystokinin-dependent lipid-induced satiation and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 148(12):5656–5666.  https://doi.org/10.1210/en.2007-0341. en.2007-0341 [pii]CrossRefPubMedGoogle Scholar
  87. 87.
    Asarian L, Geary N (2002) Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm Behav 42(4):461–471. S0018506X02918350 [pii]CrossRefGoogle Scholar
  88. 88.
    Thammacharoen S, Lutz TA, Geary N, Asarian L (2008) Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 149(4):1609–1617.  https://doi.org/10.1210/en.2007-0340CrossRefPubMedGoogle Scholar
  89. 89.
    Asarian L, Geary N (2006) Modulation of appetite by gonadal steroid hormones. Philos Trans R Soc Lond B Biol Sci 361(1471):1251–1263.  https://doi.org/10.1098/rstb.2006.1860CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Asarian L, Geary N (2013) Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 305(11):R1215–R1267.  https://doi.org/10.1152/ajpregu.00446.2012CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute of Veterinary PhysiologyVetsuisse Faculty University of ZurichZurichSwitzerland

Personalised recommendations