Sharma M, Palacios-Bois J, Schwartz G, Iskandar H, Thakur M, Quirion R, Nair NPV (1989) Circadian rhythms of melatonin and cortisol in aging. Biol Psychiatry 25(3):305–319. https://doi.org/10.1016/0006-3223(89)90178-9
CAS
CrossRef
PubMed
Google Scholar
Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA (2012) The human circadian metabolome. Proc Natl Acad Sci U S A 109(7):2625–2629. https://doi.org/10.1073/pnas.1114410109
CrossRef
PubMed
PubMed Central
Google Scholar
Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, Cui N, Middleton B, Ackermann K, Kayser M, Thumser AE, Raynaud FI, Skene DJ (2014) Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A 111(29):10761–10766
CAS
CrossRef
Google Scholar
Kasukawa T, Sugimoto M, Hida A, Minami Y, Mori M, Honma S, Honma K, Mishima K, Soga T, Ueda HR (2012) Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A 109(37):15036–15041. https://doi.org/10.1073/pnas.1207768109
CrossRef
PubMed
PubMed Central
Google Scholar
Minami Y, Kasukawa T, Kakazu Y, Iigo M, Sugimoto M, Ikeda S, Yasui A, van der Horst GTJ, Soga T, Ueda HR (2009) Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci U S A 106(24):9890–9895. https://doi.org/10.1073/pnas.0900617106
CrossRef
PubMed
PubMed Central
Google Scholar
Jens H et al (2009) On-line breath analysis with PTR-TOF. J Breath Res 3(2):027004
CrossRef
Google Scholar
Španěl P, Smith D (2013) Chapter 4 - Recent SIFT-MS Studies of Volatile Compounds in Physiology, Medicine and Cell Biology. In: Amann A, Smith D (eds) Volatile Biomarkers. Elsevier, Boston, p 48–76
Google Scholar
Martinez-Lozano Sinues P, Zenobi R, Kohler M (2013) Analysis of the exhalome: a diagnostic tool of the future. Chest 144(3):746–749. https://doi.org/10.1378/chest.13-1106
CAS
CrossRef
PubMed
Google Scholar
Zhu JJ, Bean HD, Jimenez-Diaz J, Hill JE (2013) Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study. J Appl Physiol 114(11):1544–1549. https://doi.org/10.1152/japplphysiol.00099.2013
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Bean HD, Zhu J, Hill JE (2011) Characterizing bacterial volatiles using secondary electrospray ionization mass spectrometry (SESI-MS). J Vis Exp 52:e2664. https://doi.org/10.3791/2664
CAS
CrossRef
Google Scholar
Dillon LA, Stone VN, Croasdell LA, Fielden PR, Goddard NJ, Paul Thomas CL (2010) Optimisation of secondary electrospray ionisation (SESI) for the trace determination of gas-phase volatile organic compounds. Analyst 135(2):306–314
CAS
CrossRef
Google Scholar
Zhu J, Bean HD, Kuo YM, Hill JE (2010) Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. J Clin Microbiol 48(12):4426–4431. https://doi.org/10.1128/JCM.00392-10
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Martinez-Lozano Sinues P, Tarokh L, Li X, Kohler M, Brown SA, Zenobi R, Dallmann R (2014) Circadian variation of the human metabolome captured by real-time breath analysis. PLoS One 9(12):e114422. https://doi.org/10.1371/journal.pone.0114422
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Martinez-Lozano Sinues P, Fernandez de la Mora J (2015) Method to analyze and classify persons and organisms based on odor patterns from released vapors; US Patent No: US9121844 B1
Google Scholar
Martinez-Lozano Sinues P, Fernandez de la Mora J (2010) Method for detecting volatile species of high molecular weight; US Patent No: US 20100264304 A1
Google Scholar
López-Herrera J, Barrero A, Boucard A, Loscertales I, Márquez M (2004) An experimental study of the electrospraying of water in air at atmospheric pressure. J Am Soc Mass Spectrom 15(2):253–259. https://doi.org/10.1016/j.jasms.2003.10.018
CAS
CrossRef
PubMed
Google Scholar
Gaugg MT, Garcia Gomez D, Barrios Collado C, Vidal de Miguel G, Kohler M, Zenobi R, Martinez-Lozano Sinues P (2016) Expanding metabolite coverage of real-time breath analysis by coupling a universal secondary electrospray ionization source and high resolution mass spectrometry—a pilot study on tobacco smokers. J Breath Res 10(1):016010
CrossRef
Google Scholar
Keller BO, Sui J, Young AB, Whittal RM (2008) Interferences and contaminants encountered in modern mass spectrometry. Anal Chim Acta 627(1):71–81. https://doi.org/10.1016/j.aca.2008.04.043
CAS
CrossRef
PubMed
Google Scholar
García-Gómez D, Gaisl T, Bregy L, Cremonesi A, Sinues PM-L, Kohler M, Zenobi R (2016) Real-time quantification of amino acids in the Exhalome by secondary electrospray ionization–mass spectrometry: a proof-of-principle study. Clin Chem 62(9):1230–1237. https://doi.org/10.1373/clinchem.2016.256909
CAS
CrossRef
PubMed
Google Scholar
García-Gómez D, Martínez-Lozano Sinues P, Barrios-Collado C, Vidal-De-Miguel G, Gaugg M, Zenobi R (2015) Identification of 2-alkenals, 4-hydroxy-2-alkenals, and 4-hydroxy-2,6-alkadienals in exhaled breath condensate by UHPLC-HRMS and in breath by real-time HRMS. Anal Chem 87(5):3087–3093. https://doi.org/10.1021/ac504796p
CAS
CrossRef
PubMed
Google Scholar