Anesthetic Management for Squamous Cell Carcinoma of the Esophagus

  • Eva Y. F. Chan
  • Danny K. Y. Ip
  • Michael G. IrwinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2129)


While surgery plays a major role in the treatment and potential cure of esophageal cancers, esophagectomy remains a high-risk operation with significant perioperative morbidity and mortality compared to other oncosurgical procedures. Perioperative management for esophagectomy is complex, and close attention to detail in various areas of anesthetic and perioperative management is crucial to improve postoperative outcomes. Patients undergoing esophagectomy should be offered an evidence-based risk assessment for their postoperative outcomes to allow active participation and informed, shared-decision making. Novel perioperative risk scores have been developed to predict both short-term and long-term outcomes in patients with esophageal cancer, although independent validation of such scoring systems is still required. Apart from accurate preoperative risk assessment, further efforts to improve morbidity and mortality from esophagectomy is achieved through comprehensive Enhanced Recovery after Surgery (ERAS) protocols, which comprise an individualized bundle of care throughout the perioperative journey for each patient and should be implemented as a standard practice. Furthermore, anesthetic practice and perioperative anesthetic drug usage can potentially affect cancer progression and recurrence. This chapter reviews current evidence for various factors that contribute to the improvement of perioperative outcomes, including prehabilitation, preoperative optimization of anemia, thoracic epidural analgesia, intraoperative protective ventilatory strategies, goal-directed fluid therapy, as well as special attention to other perioperative issues that potentially reduce anastomotic and cardiopulmonary complications. In summary, it is difficult to show a measurable benefit from any one single intervention, and a multidisciplinary approach that encompasses multiple aspects of perioperative care is necessary to improve outcomes after esophagectomy.

Key words

Esophagus Complication Anesthesia 


  1. 1.
    Jun IJ, Jo JY, Kim JI (2017) Impact of anaesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: a retrospective observational study. Sci Rep 7(1):14020CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Carney A, Dickinson M (2015) Anaesthesia for esophagectomy. Anaesthesiol Clin 33(1):143CrossRefGoogle Scholar
  3. 3.
    Hirahara N, Tajima Y, Fujii Y (2018) A novel prognostic scoring system using inflammatory response biomarkers for esophageal squamous cell carcinoma. World J Surg 42:172–184CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Su XD, Zhang DK, Zhang X (2014) Prognostic factors in patients with recurrence after complete resection of esophageal squamous cell carcinoma. J Thorac Dis 6(7):949–957PubMedPubMedCentralGoogle Scholar
  5. 5.
    Durkin C, Schisler T, Lohser J (2017) Current trends in anaesthesia for esophagectomy. Curr Opin Anaesthesiol 30(1):30–35PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bartels K, Fiegel M, Stevens Q, Ahlgren B, Qeitzel N (2015) Approaches to perioperative care for esophagectomy. J Cardiothorac Vasc Anesth 29(2):472–480CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim R (2017) Anaesthetic technique and cancer recurrence in oncologic surgery: unraveling the puzzle. Cancer Metastasis Rev 36:159–177CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Snyder GL, Greenberg S (2010) Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br J Anaesth 105(2):106–115CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cassinello F, Prieto I, del Olmo M (2015) Cancer surgery: how may anesthesia influence outcome? J Clin Anesth 27(3):262–272CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brittenden J, Heys SD, Ross J, Eremin O (1996) Natural killer cells and cancer. Cancer 77:1226–1243CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tai LH, de Souza CT, Belanger S (2012) Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. Cancer Res 73(1):97–107CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kurosawa S, Kato M (2008) Anaesthetics, immune cells, and immune responses. J Anesth 22:263–277CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Reiche EM, Nunes SO, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5:617–625CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aloia TA, Zimmitti G, Conrad C, Gottumukalla V, Kopetz S, Vauthey JN (2014) Return to intended oncologic treatment (RIOT): a novel metric for evaluating the quality of oncosurgical therapy for malignancy. J Surg Oncol 110(2):107–114CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Merkow RP, Bilimoria KY, Tomlinson JS (2014) Postoperative complications reduce adjuvant chemotherapy use in resectable pancreatic cancer. Ann Surg 260(2):372–377CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Slankamenac K, Slankamenac M, Schlegel A (2017) Impact of postoperative complications on readmission and long-term survival in patients following surgery for colorectal cancer. Int J Color Dis 32(6):805–811CrossRefGoogle Scholar
  20. 20.
    Bartels H, Stein HJ, Siewert JR (2000) Risk analysis in Esophageal surgery. Recent Results Cancer Res 155:89–96CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Reeh M, Metze J, Uzunoglu FG (2016) The PER (preoperative esophagectomy risk) score: a simple risk score to predict short-term and long-term outcome in patients with surgically treated esophageal cancer. Medicine (Baltimore) 95(7):e2724CrossRefGoogle Scholar
  22. 22.
    Shander A, Knight K, Thurer R, Adamson J, Spence R (2004) Prevalence and outcomes of anemia in surgery: a systematic review of the literature. Am J Med 116:58S–69SCrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cappell MS, Goldberg ES (1992) The relationship between the clinical presentation and spread of colon cancer in 315 consecutive patients. A significant trend of earlier cancer detection from 1982 through 1988 at a university hospital. J Clin Gastroenterol 14:227–235CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Munting KE, Klein AA (2019) Optimisation of pre-operative anaemia in patients before elective major surgery—why, who, when and how? Anaesthesia 74(Suppl 1):49–57CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Muñoz M, Acheson AG, Auerbach M (2017) International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia 72:233–247CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Leichtle SW, Mouawad NJ, Lampman R, Singal B, Cleary RK (2011) Does preoperative anemia adversely affect colon and rectal surgery outcomes? J Am Coll Surg 212:187–194CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fields RC, Meyers BF (2006) The effects of perioperative blood transfusion on morbidity and mortality after esophagectomy. Thorac Surg Clin 16(1):75–86CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Boshier PR, Ziff C, Adam ME (2018) Effect of perioperative blood transfusion on the long-term survival of patients undergoing esophagectomy for esophageal cancer: a systematic review and meta-analysis. Dis Esophagus 31(4)Google Scholar
  29. 29.
    Schneider C, Boddy AP, Fukuta J, Groom WD, Streets CG (2014) Predicting blood transfusion in patients undergoing minimally invasive oesophagectomy. Int J Surg 12(12):1342–1347CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reeh M, Ghadban T, Dedow J (2017) Allogenic blood transfusion is associated with poor perioperative and long-term outcome in esophageal cancer. World J Surg 41(1):208–215CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gottschalk A, Sharma S, Ford J, Durieux ME, Tiouririne M (2010) The role of the perioperative period in recurrence after cancer surgery. Anaesth Analg 110(6):1636–1643CrossRefGoogle Scholar
  32. 32.
    Liu J, Chen S, Chen Y (2018) Perioperative blood transfusion has no effect on overall survival after esophageal resection for esophageal squamous cell carcinoma: a retrospective cohort study. Int J Surg 55:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ling FC, Hoelscher AH, Vallbohmer D (2009) Leukocyte depletion in allogeneic blood transfusion does not change the negative influence on survival following transthoracic resection for esophageal cancer. J Gastrointest Surg 13(4):581–586CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Towe CW, Gulack BC, Kim S (2018) Restrictive transfusion practices after esophagectomy are associated with improved outcome: a review of the society of thoracic surgeons general thoracic database. Ann Surg 267(5):886–891CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Keeler BD, Dickson EA, Simpson JA (2019) The impact of preoperative intravenous iron on quality of life after colorectal cancer surgery: outcomes from the intravenous iron in colorectal cancer-associated anaemia (IVICA) trial. Anaesthesia 74:696–699CrossRefGoogle Scholar
  36. 36.
    Doganay E, Moorthy K (2019) Prehabilitation for esophagectomy. J Thorac Dis 11(5):S632–S638CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Steenhagen E (2019) Preoperative nutritional optimisation of esophageal cancer patients. J Thorac Dis 11(5):S645–S653CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hughes MJ, Hackney RJ, Lamb PJ, Wigmore SJ, Christopher Deans DA, Skipworth RJE (2019) Prehabilitation before major abdominal surgery: a systematic review and meta-analysis. World J Surg 43(7):1661–1668CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Barberan-Garcia A, Ubre M, Roca J (2018) Personalised prehabilitation in high-risk patients undergoing elective major abdominal surgery - a randomised controlled trial. Ann Surg 267(1):50–56CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Carli F, Gillis C, Scheede-Bergdahl C (2017) Promoting a culture of prehabilitation for the surgical cancer patient. Acta Oncol 56(2):128–133CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Valkenet K, van de Port IG, Dronkers JJ (2011) The effects of preoperative exercise therapy on postoperative outcome: a systematic review. Clin Rehabil 25(2):99–111CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wyner-Blyth V, Moorthy K (2017) Prehabilitation: preparing patients for surgery. BMJ 358:j3702CrossRefGoogle Scholar
  43. 43.
    Huang DD, Ji YB, Zhou DL (2017) Effect of surgery-induced acute muscle wasting on postoperative outcomes and quality of life. J Surg Res 218:58–96CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vermillion SA, James A, Dorrell RD (2018) Preoperative exercise therapy for gastrointestinal cancer patients: a systematic review. Syst Rev 7(1):103CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Moran J, Guinan E, McCormick (2016) The ability of prehabilitation to influence postoperative outcome after intra-abdominal operation: a systematic review and meta-analysis. Surgery 160:1189–1201CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    West MA, Loughney L, Lythgoe D (2015) Effect of prehabilitation on objectively measured physical fitness after neoadjuvant treatment in preoperative rectal cancer patients: a blinded interventional pilot study. Br J Anaesth 114(2):244–251CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Arends J, Bachmann P, Baracos V (2017) ESPEN guidelines on nutrition in cancer patients. Clin Nutr 36(1):11–48CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Minnella EM, Awasthi R, Loiselle SE (2018) Effect of exercise and nutrition prehabilitation on functional capacity in esophagogastric cancer surgery. JAMA Surg 153(12):1081–2089CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Santa Mina D, Clarke H, Ritvo P, Leung YW, Matthew AG, Katz J (2014) Effect of total-body prehabilitation on postoperative outcomes: a systematic review and meta-analysis. Physiotherapy 100(3):196–207CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dewberry LC, Wingrove LJ, Marsh MD, Glode AE (2019) Pilot prehabilitation program for patients with esophageal cancer during neoadjuvant therapy and surgery. J Surg Res 235:66–72CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cruz-Jentoft AJ, Bahat G, Bauer J (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31CrossRefGoogle Scholar
  52. 52.
    Fearon K, Strasser F, Anker SD (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12(5):489–495CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Elliott JA, Doyle SL, Murphy CF (2017) Sarcopenia: prevalence, and impact on operative and oncologic outcomes in the multimodal management of locally advanced esophageal cancer. Ann Surg 266:822–830CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Jack S, West MA, Raw D (2014) The effect of neoadjuvant chemotherapy on physical fitness and survival in patients undergoing oesophagogastric cancer surgery. Eur J Surg Oncol 40(10):1313–1320CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Makiura D, Ono R, Inoue J, Kashiwa M (2016) Preoperative sarcopenia is a predictor of postoperative pulmonary complications in esophageal cancer following esophagectomy: a retrospective cohort study. J Geriatr Oncol 7(6):430–436CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Awad S, Tan BH, Cui H (2012) Marked changes in body composition following neoadjuvant chemotherapy for oesophagogastric cancer. Clin Nutr 31(1):74–77CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Paireder M, Asari R, Kristo I (2017) Impact of sarcopenia on outcome in patients with esophageal resection following neoadjuvant chemotherapy for esophageal cancer. Eur J Surg Oncol 43(2):478–484CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Templeton R, Greenhalgh D (2019) Preoperative rehabilitation for thoracic surgery. Curr Opin Anaesthesiol 32(1):23–28CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Li Y, Dong H, Tan S (2019) Effects of thoracic epidural anaesthesia/analgesia on the stress response, pain relief, hospital stay and treatment costs of patients with esophageal carcinoma undergoing thoracic surgery: a single-center, randomized controlled trial. Medicine (Baltimore) 98(7):e14362CrossRefGoogle Scholar
  60. 60.
    Feltracco P, Bortolato A, Barbieri S (2018) Perioperative benefit and outcome of thoracic epidural in esophageal surgery: a clinical review. Dis Esophagus 1(31):5Google Scholar
  61. 61.
    Ng JM (2011) Update on anesthetic management for esophagectomy. Curr Opin Anaesthesiol 24(1):37–43CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Li W, Li Y, Huang Q (2016) Short and long-term outcomes of epidural or intravenous analgesia after esophagectomy: a propensity-matched cohort study. PLoS One 11(4):e0154380CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Findlay JM, Gillies RS, Millo J (2014) Enhanced recovery for esophagectomy: a systematic review and evidence-based guidelines. Ann Surg 259(3):413–431CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Liu F, Wang W, Wang C (2018) Enhanced recovery after surgery (ERAS) programs for esophagectomy protocol for a systematic review and meta-analysis. Medicine (Baltimore) 97(8):e0016CrossRefGoogle Scholar
  65. 65.
    Low DE, Allum W, De Manzoni G (2019) Guidelines for perioperative care in esophagectomy: enhanced recovery after surgery (ERAS®) society recommendations. World J Surg 43(2):299–330CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Steinthorsdottir KJ, Wildgaard L, Hansen HJ (2014) Regional analgesia for video-assisted thoracic surgery: a systematic review. Eur J Cardiothorac Surg 45(6):959–966CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jaeger JM, Collins SR, Blank RS (2012) Anesthetic management for esophageal resection. Anesthesiol Clin 30(4):731–747CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Manion SC, Brennan TJ (2011) Thoracic epidural analgesia and acute pain management. Anesthesiology 115(1):181–188CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pöpping DM, Elia N, Marret E (2008) Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg 143(10):990–999CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Flisberg P, Tornebrandt K, Walther B (2001) Pain relief after esophagectomy: thoracic epidural analgesia is better than parental opioids. J Cardiothorac Vasc Anesth 15(3):282–287CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tsui SL, Law S, Fok M (1997) Postoperative analgesia reduces mortality and morbidity after esophagectomy. Am J Surg 173(6):472–478CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Brodner G, Pogatzki E, Van Aken H et al (1998) A multimodal approach to control postoperative pathophysiology and rehabilitation in patients undergoing abdominothoracic esophagectomy. Anesth Analg 86(2):228–234PubMedPubMedCentralGoogle Scholar
  73. 73.
    Smedstad KG, Beattie WS, Blair WS, Buckley DN (1992) Postoperative pain relief and hospital stay after total esophagectomy. Clin J Pain 8(2):149–153CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Michelet P, D’Journo XB, Roch A (2005) Perioperative risk factors for anastomotic leakage after esophagectomy: influence of thoracic epidural analgesia. Chest 128(5):3461–3466CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Al-Rawi OY, Pennefather SH, Page RD (2008) The effect of thoracic epidural bupivacaine and an intravenous adrenaline infusion on gastric tube blood flow during esophagectomy. Anesth Analg 106(3):884–887CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Zura M, Kozmar A, Sakic K (2012) Effect of spinal and general anesthesia on serum concentration of pro-inflammatory and anti-inflammatory cytokines. Immunobiology 217(6):622–627CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Beilin B, Shavit Y, Trabekin E (2003) The effects of postoperative pain management on immune response to surgery. Anesth Analg 97(3):822–827CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Beilin B, Bessler H, Mayburd E (2003) Effects of preemptive analgesia on pain and cytokine production in the postoperative period. Anesthesiology 98(1):151–155CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yokoyama M, Itano Y, Katayama H (2005) The effects of continuous epidural anesthesia and analgesia on stress response and immune function in patients undergoing radical esophagectomy. Anaesth Analg 101(5):1532–1527CrossRefGoogle Scholar
  80. 80.
    Fares KM, Mohamed SA, Hamza HM (2014) Effect of thoracic epidural analgesia on pro-inflammatory cytokines in patients subjected to protective lung ventilation during Ivor Lewis esophagectomy. Pain Physician 17(5):305–315PubMedPubMedCentralGoogle Scholar
  81. 81.
    Rudin A, Flisberg P, Johansson J (2005) Thoracic epidural analgesia or intravenous morphine analgesia after thoracoabdominal esophagectomy: a prospective follow-up of 201 patients. J Cardiothorac Vasc Anesth 19(3):350–357CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Werawatganon T, Charuluxanun S (2005) Patient controlled intravenous opioid analgesia versus continuous epidural analgesia for pain after intra-abdominal surgery. Cochrane Database Syst Rev 1:CD004088Google Scholar
  83. 83.
    Guay J, Kopp S (2016) Epidural pain relief versus systemic opioid-based pain relief for abdominal aortic surgery. Cochrane Database Syst Rev 5(1):CD005059Google Scholar
  84. 84.
    Kahn L, Baxter FJ, Dauphin A (1999) A comparison of thoracic and lumbar epidural techniques for post-thoracoabdominal esophagectomy analgesia. Can J Anaesth 46(5):415–422CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Davies RG, Myles PS, Graham JM (2006) A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy--a systematic review and meta-analysis of randomized trials. Br J Anaesth 96(4):418–426CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ding X, Jin S, Niu X (2014) A comparison of the analgesia efficacy and side effects of paravertebral compared with epidural blockade for thoracotomy: an updated meta-analysis. PLoS One 9(5):e96233CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Yeung JH, Gates S, Naidu BV (2016) Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev 2:CD009121PubMedPubMedCentralGoogle Scholar
  88. 88.
    Kehlet H, Wilkinson RC, Fischer HB (2007) PROSPECT: evidence-based, procedure-specific postoperative pain management. Best Pract Res Clin Anaesthesiol 21(1):149–159CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Shanthanna H, Moisuik P, O'Hare T (2018) Survey of postoperative regional analgesia for Thoracoscopic surgeries in Canada. J Cardiothorac Vasc Anesth 32(4):1750–1755CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Cummings KC 3rd, Xu F, Cummings LC, Cooper GS (2012) A comparison of epidural analgesia and traditional pain management effects on cancer recurrence after colectomy: a population based study. Anesthesiology 116(4):797–806CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Weng M, Chen W, Hou W, Li L, Ding M, Miao C (2016) The effect of neuraxial anesthesia on cancer recurrence and survival after cancer surgery: an updated meta-analysis. Oncotarget 7(12):15262–15273CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Pöpping DM, Elia N, Van Aken HK, Marret E, Schug SA, Kranke P (2014) Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Ann Surg 259(6):1056–1067CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Cummings KC III, Kou TD, Chak A (2019) Surgical approach and the impact of epidural analgesia on survival after esophagectomy for cancer: a population based retrospective cohort study. PLoS One 14(1):e0211125CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Law S, Wong KH, Kwok KF (2004) Predictive factors for postoperative pulmonary complications and mortality after esophagectomy for cancer. Ann Surg 240(5):791–800CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ferguson MK, Durkin AE (2002) Preoperative prediction of the risk of pulmonary complications after esophagectomy for cancer. J Thorac Cardiovasc Surg 123(4):661–669CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Brower RG, Matthay MA, Morris A (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 342(18):1301–1308CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Marret E, Cinotti R, Berard L (2018) Protective ventilation during anaesthesia reduces major postoperative complications after lung cancer surgery: a double-blind randomised controlled trial. Eur J Anaesthesiol 35:727–735CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Verhage RJ, Boone J, Rijkers GT (2014) Reduced local immune response with continuous positive airway pressure during one-lung ventilation for oesophagectomy. Br J Anaesth 112(5):920–928CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Gajic O, Dara SI, Mendez JL (2004) Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32(9):1817–1824CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Determann RM, Royakkers A, Wolthuis EK (2010) Ventilation with lower tidal volumes as compared with convential tidal volumes for patients without acute lung injury: a preventive randomised controlled trial. Crit Care 14(1):R1CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Michelet P, D’Journo XB, Roch A, Doddoli C (2006) Protective ventilation influences systemic inflammation after esophagectomy: a randomised controlled study. Anaesthesiology 105(5):911–919CrossRefGoogle Scholar
  102. 102.
    Wrigge H, Uhlig U, Zinserling J (2004) The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 98(3):775–781CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Schiling T, Kozian A, Huth C (2005) The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg 101(4):957–965CrossRefGoogle Scholar
  104. 104.
    Yang M, Ahn HJ, Kim K (2011) Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery? A randomised controlled trial. Chest 139(3):530–537CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Tugrul M, Camci E, Karadeniz H, Senturk M, Pembeci K, Akpir K (1997) Comparison of volume controlled with pressure controlled ventilation during one lung anaesthesia. Br J Anaesth 79(3):306–310CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Senturk NM, Dilek A, Camci E, Senturk E (2005) Effects of positive end-expiratory pressure on ventilatory and oxygenation parameters during pressure-controlled one-lung ventilation. J Cardiothorac Vasc Anesth 19(1):71–75CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Nichols D, Haranath S (2007) Pressure control ventilation. Crit Care Clin 23(2):183–199CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Choi H, Cho JH, Kim HK (2019) Prevalence and clinical course of postoperative acute lung injury after esophagectomy for esophageal cancer. J Thorac Dis 11(1):200–205CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Weijs TJ, Ruurda JP, Luyer MDP (2013) Strategies to reduce pulmonary complications after esophagectomy. World J Gastroenterol 19(39):6509–6514CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Hu XY, Du B (2019) Lung-protective ventilation during one-lung ventilation: known knowns, and known unknowns. J Thorac Dis 11(3):S237–S240CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Hemmes SN, Gama de Abreu M, Pelosi P (2014) High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 384(9942):495–503CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Serpa NA, Hemmes SN, Barbas CS (2015) Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology 123(1):66–78CrossRefGoogle Scholar
  113. 113.
    Blank RS, Colquhoun DA, Duriex ME (2016) Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology 124(6):1286–1295CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Schraag S, Pradelli L, Alsaleh AJO (2018) Propofol vs. inhalational agents to maintain general anaesthesia in ambulatory and in-patient surgery: a systematic review and meta-analysis. BMC Anesthesiol 18(1):162CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ (2006) Propofol inhibits phosphorylation of N-methyl-D-aspartate NR1 subunits in neurons. Anaesthesiology 104(4):763–769CrossRefGoogle Scholar
  116. 116.
    Qiu Q, Choi SW, Wong SS, Irwin MG, Cheung CW (2016) Effects of intraoperative maintenance of general anaesthesia with Propofol on postoperative pain outcomes – a systematic review and meta-analysis. Anaesthesia 71(10):1222–1233CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Song JG, Shin JW, Lee EH, Choi DK (2012) Incidence of post-thoracotomy pain: a comparison between total intravenous anaesthesia and inhalation anaesthesia. Eur J Cardiothorac Surg 41(5):1078–1082CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Yap A, Lopez-Olivo MA, Duboiwitz J, Hiller J, Ruedel B (2019) Anesthetic technique and cancer outcomes: a meta-analysis of total intravenous versus volatile anesthesia. Can J Anaesth 66(5):546–561CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Dierssen-Sotos T, Gómez-Acebo I, de Pedro M (2016) Use of non-steroidal anti-inflammatory drugs and risk of breast cancer: the Spanish multi-case-control (MCC) study. BMC Cancer 16(1):660CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Vidal AC, Howard LE, Moreira DM (2015) Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Clin Cancer Res 21(4):756–762CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Friis S, Riis AH, Erichsen R, Baron JA (2015) Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk. Ann Intern Med 163(5):347–355CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Shi J, Leng W, Zhao L, Xu C (2017) Nonsteroidal anti-inflammatory drugs using and risk of head and neck cancer: a dose–response meta-analysis of prospective cohort studies. Oncotarget 8(58):99066–99074PubMedPubMedCentralGoogle Scholar
  123. 123.
    Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94(4):252–266CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7(5):651–658CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Wong RSY (2019) Role of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in Cancer Prevention and Cancer Promotion. Adv Pharmacol Sci 2019:3418975PubMedPubMedCentralGoogle Scholar
  127. 127.
    Rushfeldt CF, Agledahl UC, Sveinbjornsson B (2016) Effect of perioperative dexamethasone and different NSAIDs on anastomotic leak risk: a propensity score analysis. World J Surg 40(11):2782–2789CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Fjederholt KT, Okholm C, Svendsen LB (2018) Ketorolac and other NSAIDs increase the risk of anastomotic leakage after surgery for GEJ cancers: a cohort study of 557 patients. J Gastrointest Surg 22(4):587–594CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    McDermott FD, Heeney A, Kelly ME, Steele RJ, Carlson GL, Winter DC (2015) Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomic leaks. Br J Surg 102(5):462–479CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Paulasir S, Kaoutzanis C, Welch KB (2015) Nonsteroidal anti-inflammatory drugs: do they increase the risk of anastomotic leaks following colorectal operations? Dis Colon Rectum 58(9):870–877CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Rutegard M, Westermark S, Kverneng Hultberg D (2016) Nonsteroidal anti-inflammatory drug use and risk of anastomotic leakage after anterior resection: a protocol-based study. Dig Surg 33(2):129–135CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Hakkarainen TW, Steele SR, Bastaworous A (2015) Nonsteroidal anti-inflammatory drugs and the risk for anastomotic failure: a report from Washington State’s surgical care and outcomes assessment program (SCOAP). JAMA Surg 150(3):223–228CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Hassan I (2014) NSAID use and colorectal anastomotic leaks. Caution and further investigation. J Gastrointest Surg 18(8):1405–1406CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Bhangu A, Singh P, Fitzgeral JE (2014) Postoperative nonsteroidal anti-inflammatory drugs and risk of anastomotic leak: meta-analysis of clinical and experimental studies. World J Surg 38(9):2247–2257CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Hao WM, Shen YX, Feng MX (2018) Aspirin acts in esophageal cancer: a brief review. J Thorac Dis 10(4):2490–2497CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Sun L, Yu S (2011) Meta-analysis: non-steroidal anti-inflammatory drug use and the risk of esophageal squamous cell carcinoma. Dis Esophagus 24(8):544–549CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Husain SS, Szabo IL, Tamawski AS (2002) NSAID inhibition of GI cancer growth: clinical implications and molecular mechanisms of action. Am J Gastroenterol 97(3):542–553CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Li M, Lotan R, Levin B, Tahara E, Lippman SM, Xu SC (2000) Aspirin induction of apoptosis in esophageal cancer: a potential for chemoprevention. Cancer Epidemiol Biomark Prev 9(6):545–549Google Scholar
  139. 139.
    Krishnan K, Ruffin MT, Brenner DE (1997) Colon cancer chemoprevention: clinical development of aspirin as a chemopreventive agent. J Cell Biochem 28-29:148–158CrossRefGoogle Scholar
  140. 140.
    Gupta RA, DuBois RN (1998) Aspirin, NSAIDs, and colon cancer prevention: mechanisms? Gastoenterology 114(5):1095–1098CrossRefGoogle Scholar
  141. 141.
    Alshafie GA, Abou-Issa HM, Seibert K, Harris RE (2000) Chemotherapeutic evaluation of celecoxib, a cyclooxygenase-2 inhibitor, in a rat mammary tumour model. Oncol Rep 7:1377–1381PubMedPubMedCentralGoogle Scholar
  142. 142.
    Yao M, Zhou W, Sangha S, Albert A (2005) Effects of nonselective cyclooxygenase inhibition with low-dose ibuprofen on tumor growth, angiogenesis, metastasis, and survival in a mouse model of colorectal cancer. Clin Cancer Res 11(4):1618–1628CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Liu X, Li P, Zhang ST, You H, Jia JD, Yu ZL (2008) COX-2 mRNA expression in esophageal squamous cell carcinoma (ESCC) and effect by NSAID. Dis Esophagus 21(1):9–14CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Liu JF, Jamieson GG, Drew PA, Zhu GJ (2005) Aspirin induces apoptosis in esophageal cancer cells by inhibiting the pathway of NF-kappaB downstream regulation of cyclooxygenase-2. ANZ J Surg 75(11):1011–1016CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Kase S, Osaki M, Honjo S (2004) A selective cyclooxygenase-2 inhibitor, NS 398, inhibits cell growth and induces cell cycle arrest in the G2/M phase in human esophageal squamous cell carcinoma cells. Cancer Res 23(2):301–307Google Scholar
  146. 146.
    Masferrer J (2001) Approach to angiogenesis inhibition based on cyclooxygenase-2. Cancer J 7:144–150Google Scholar
  147. 147.
    Bolieva LZ, Dzhioev FK, Kakabadze SA (2007) Effects of acetylsalicyclic acid and celecoxib on the N-nitrosodiethylamine induced carcinogenesis in rat liver and esophagus. Bull Exp Biol Med 143:87–90CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Deasy BM, O’Sullivan-Coyne G, O’Donovan TR (2007) Cyclooxygenase-2 inhibitors demonstrate anti-proliferative effects in esophageal cancer cells by prostaglandin E-2 independent mechanisms. Cancer Lett 256:246–258CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Ji Y, Chen SY, Xiao X (2012) B-blockers: a novel class of antitumor agents. Onco Targets Ther 5:391–401CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Cole SW (2012) Sood AK (2012) molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18(5):1201–1206CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Lutgendorf SK, Cole S, Costanzo E (2003) Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 9(12):4514–4521PubMedPubMedCentralGoogle Scholar
  152. 152.
    Palm D, Lang K, Niggemann B (2006) The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer 118(11):2744–2749CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Benish M, Bartal I, Goldfarb Y (2008) Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol 15(7):2042–2052CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Akbar S, Alsharidah MS (2014) Are beta blockers new potential anticancer agents? Asian Pac J Cancer Prev 15(22):9567–9574CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Melhem-Bertrandt A, Chavez-Macgregor M, Lei X (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29(19):2645–2652CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Grytli HH, Fagerland MW, Fosså SD (2014) Association between use of β-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol 65(3):635–641CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Diaz ES, Karlan BY, Li AJ (2012) Impact of beta blockers on epithelial ovarian cancer survival. Gynecol Oncol 127(3):375–378CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Johannesdottir SA, Schmidt M, Phillips G (2013) Use of β-blockers and mortality following ovarian cancer diagnosis: a population-based cohort study. BMC Cancer 13:85CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    McCourt C, Coleman HG, Murray LJ (2014) Beta-blocker usage after malignant melanoma diagnosis and survival: a population-based nested case-control study. Br J Dermatol 170(4):930–938CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Shah SM, Carey IM, Owen CG (2011) Does β-adrenoceptor blocker therapy improve cancer survival? Findings from a population-based retrospective cohort study. Br J Clin Pharmacol 72(1):157–161CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Coleman CI, Baker WL, Kluger J (2008) Antihypertensive medication and their impact on cancer incidence: a mixed treatment comparison meta-analysis of randomized controlled trials. J Hypertens 26(4):622–629CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Fleisher LA, Fleischmann KE, Auerbach AD (2014) 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation 130(24):2215–2245CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Chang PY, Huang WY, Lin CL (2015) Propanolol reduces cancer risk: a population-based cohort study. Medicine (Baltimore) 94(27):e1097CrossRefGoogle Scholar
  164. 164.
    Monami M, Filippi L, Ungar A (2013) Further data on beta-blockers and cancer risk: observational study and meta-analysis of randomised clinical trials. Curr Med Res Opin 29(4):369–378CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Zhang D, Ma Q, Shen S (2009) Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist's anticancer effect in pancreatic cancer cell. Pancreas 38(1):94–100CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Guo K, Ma Q, Wang L (2009) Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep 22(4):825–830PubMedPubMedCentralGoogle Scholar
  167. 167.
    Pantziarka P, Bouche G, Sukhatme V (2016) Repurposing drugs in oncology (ReDO)—propanolol as an anti-cancer agent. Ecancermedicalscience 10:680PubMedPubMedCentralGoogle Scholar
  168. 168.
    Liao X, Che X, Zhao W (2010) The β-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor κB signaling. Oncol Rep 24(6):1669–1676PubMedPubMedCentralGoogle Scholar
  169. 169.
    Ito K, Ito M, Ando A (2017) Simplified intraoperative goal-directed therapy using the FloTrac/Vigileo system: an analysis of its usefulness and safety. Open J Anesthesiol 7(1):1–14CrossRefGoogle Scholar
  170. 170.
    Cannesson M, Musard H, Desebbe O, Boucau C, Simon R, Henaine R (2009) The ability of stroke volume variations obtained with Vigileo/Frotrac system to monitor fluid responsiveness in mechanically ventilated patients. Anesth Analg 108(2):513–517CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Ramsingh DS, Sanghvi C, Gamboa J, Cannesson M, Applegate RL 2nd (2013) Outcome impact of goal directed fluid therapy during high risk abdominal surgery in Low to moderate risk patients: a randomized controlled trial. J Clin Monit Comput 27(3):249–257CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Scheeren TW, Wiesenack C, Gerlach H, Marx G (2013) Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput 27(3):225–233CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot J, Vallet B (2011) Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “Gray zone” approach. Anesthesiology 115(2):231–241CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Eng OS, Arlow RL, Moore D (2016) Fluid administration and morbidity in transhiatal esophagectomy. J Surg Res 200(1):91–97CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Xing X, Gao Y, Wang H (2015) Correlation of fluid balance and postoperative pulmonary complications in patients after esophagectomy for cancer. J Thorac Dis 7(11):1986–1993PubMedPubMedCentralGoogle Scholar
  176. 176.
    Chau EH, Slinger P (2014) Perioperative fluid management for pulmonary resection surgery and esophagectomy. Semin Cardiothorac Vasc Anesth 18(1):36–44CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Brandstrup B, Tonnesen H, Beier-Holgersen R (2003) Effects of intravenous fluid restriction on postoperative complications: comparisons of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238(5):641–648CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Nisanevich V, Felsentein I, Almogy G (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103(1):25–32CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Wei S, Tian J, Song X (2008) Association of perioperative fluid balance and adverse surgical outcomes in esophageal cancer and esophagogastric junction cancer. Ann Thorac Surg 86(1):266–272CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Kita T, Mammoto T, Kishi Y (2002) Fluid management and postoperative respiratory disturbances in patients with transthoracic esophagectomy for carcinoma. J Clin Anesth 14(4):252–256CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Casado D, Lopez F, Marti R (2010) Perioperative fluid management and major respiratory complications in patients undergoing esophagectomy. Dis Esophagus 23:523–528CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Goepfert MS, Reuter DA, Akyol D (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33(1):96–103CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Gan TJ, Soppitt A, Maroof M (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97(4):820–826CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Pearse R, Dawson D, Fawcett J (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay: a randomized, controlled trial. Crit Care 9(6):R687–R693CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Donati A, Loggi S, Preiser JC (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132(6):1817–1824CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Neal JM, Wilcox RT, Allen HW (2003) Near-total esophagectomy: the influence of standardized multimodal management and intraoperative fluid restriction. Reg Anesth Pain Med 28(4):328–334PubMedPubMedCentralGoogle Scholar
  187. 187.
    Pearse RM, Harrison DA, MacDonald N (2014) OPTIMISE study group. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on out- comes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 311(21):2181–2190CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Veelo DP, van Berge Henegouwen MI, Ouwehand KS (2017) Effect of goal-directed therapy on outcome after esophageal surgery: a quality improvement study. PLoS One 12(3):e0172806CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Assaad S, Popescu W, Perrino A (2013) Fluid management in thoracic surgery. Curr Opin Anaesthesiol 26(1):31–39CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Jin J, Min S, Liu D (2018) Clinical and economic impact of goal-directed fluid therapy during elective gastrointestinal surgery. Periop Med 7(22):1–8Google Scholar
  191. 191.
    Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of Preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112(6):1392–1402CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Secher NH (2013) When is enough? Individualized goal-directed fluid therapy for surgery. J Clin Monit Comput 27(3):223–224CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Kotake Y, Fukuda M, Yamagata A, Iwasaki R, Toyoda D, Sato N (2014) Low molecular weight pentastarch is more effective than crystalloid solution in goal-directed fluid management in patients undergoing major gastrointestinal surgery. J Anesth 28(2):180–188CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Yates DR, Davies SJ, Milner HE, Wilson RJ (2014) Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth 112(2):281–289CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Feldheiser A, Pavlova V, Bonomo T, Jones A, Fotopoulou C, Sehouli J (2013) Balanced crystalloid compared with balanced colloid solution using a goal-directed haemodynamic algorithm. Br J Anaesth 110(2):231–240CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Ogata T, Nakajima T, Kano K (2016) Multimodal analgesia combined with intravenous administration of acetaminophen in perioperative management of esophagectomy using modified ERAS protocol. J Clin Oncol 34(4):94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Eva Y. F. Chan
    • 1
  • Danny K. Y. Ip
    • 1
  • Michael G. Irwin
    • 1
    Email author
  1. 1.Department of AnaesthesiologyUniversity of Hong Kong, Queen Mary HospitalPok Fu LamHong Kong

Personalised recommendations