Advertisement

Reconstitution of Membrane Proteins into Platforms Suitable for Biophysical and Structural Analyses

  • Philipp A. M. Schmidpeter
  • Nattakan Sukomon
  • Crina M. NimigeanEmail author
Protocol
  • 464 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2127)

Abstract

Integral membrane proteins have historically been challenging targets for biophysical research due to their low solubility in aqueous solution. Their importance for chemical and electrical signaling between cells, however, makes them fascinating targets for investigators interested in the regulation of cellular and physiological processes. Since membrane proteins shunt the barrier imposed by the cell membrane, they also serve as entry points for drugs, adding pharmaceutical research and development to the interests. In recent years, detailed understanding of membrane protein function has significantly increased due to high-resolution structural information obtained from single-particle cryo-EM, X-ray crystallography, and NMR. In order to further advance our mechanistic understanding on membrane proteins as well as foster drug development, it is crucial to generate more biophysical and functional data on these proteins under defined conditions. To that end, different techniques have been developed to stabilize integral membrane proteins in native-like environments that allow both structural and biophysical investigations—amphipols, lipid bicelles, and lipid nanodiscs. In this chapter, we provide detailed protocols for the reconstitution of membrane proteins according to these three techniques. We also outline some of the possible applications of each technique and discuss their advantages and possible caveats.

Key words

Membrane proteins Reconstitution Amphipol Bicelles Nanodisc Membrane scaffold Membrane protein biophysics Lipids 

Notes

Acknowledgments

This work was funded by the National Institutes of Health (GM088352 and GM124451 to C.N.) and the American Heart Association (18POST33960309 to P.S.). We thank J. Rheinberger for providing the gel filtration profiles and the negative stain EM image in Fig. 3a, b.

References

  1. 1.
    Fagerberg L, Jonasson K, von Heijne G, Uhlén M, Berglund L (2010) Prediction of the human membrane proteome. Proteomics 10(6):1141–1149.  https://doi.org/10.1002/pmic.200900258CrossRefPubMedGoogle Scholar
  2. 2.
    Kühlbrandt W (2014) Cryo-EM enters a new era. Elife 3:e03678.  https://doi.org/10.7554/eLife.03678CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161(3):450–457.  https://doi.org/10.1016/j.cell.2015.03.049CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21(4):559–566.  https://doi.org/10.1016/j.sbi.2011.06.007CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liang B, Tamm LK (2016) NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat Struct Mol Biol 23(6):468–474.  https://doi.org/10.1038/nsmb.3226CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta 1808(8):1957–1974.  https://doi.org/10.1016/j.bbamem.2011.03.016CrossRefPubMedGoogle Scholar
  7. 7.
    Hunte C, Richers S (2008) Lipids and membrane protein structures. Curr Opin Struct Biol 18(4):406–411.  https://doi.org/10.1016/j.sbi.2008.03.008CrossRefPubMedGoogle Scholar
  8. 8.
    McCoy JG, Rusinova R, Kim DM, Kowal J, Banerjee S, Jaramillo Cartagena A, Thompson AN, Kolmakova-Partensky L, Stahlberg H, Andersen OS, Nimigean CM (2014) A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics. J Biol Chem 289(14):9535–9546.  https://doi.org/10.1074/jbc.M113.543389CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Quick M, Winther AM, Shi L, Nissen P, Weinstein H, Javitch JA (2009) Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc Natl Acad Sci U S A 106(14):5563–5568.  https://doi.org/10.1073/pnas.0811322106CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Quick M, Shi L, Zehnpfennig B, Weinstein H, Javitch JA (2012) Experimental conditions can obscure the second high-affinity site in LeuT. Nat Struct Mol Biol 19(2):207–211.  https://doi.org/10.1038/nsmb.2197CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232.  https://doi.org/10.1146/annurev.biochem.66.1.199CrossRefPubMedGoogle Scholar
  12. 12.
    Yu CA, Yu L (1980) Structural role of phospholipids in ubiquinol-cytochrome c reductase. Biochemistry 19(25):5715–5720CrossRefGoogle Scholar
  13. 13.
    Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666(1–2):105–117.  https://doi.org/10.1016/j.bbamem.2004.04.011CrossRefGoogle Scholar
  14. 14.
    Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20(4):471–479.  https://doi.org/10.1016/j.sbi.2010.05.006CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Popot JL, Althoff T, Bagnard D, Banères JL, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408.  https://doi.org/10.1146/annurev-biophys-042910-155219CrossRefPubMedGoogle Scholar
  16. 16.
    Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci U S A 93(26):15047–15050CrossRefGoogle Scholar
  17. 17.
    Tehei M, Perlmutter JD, Giusti F, Sachs JN, Zaccai G, Popot JL (2014) Thermal fluctuations in amphipol A8-35 particles: a neutron scattering and molecular dynamics study. J Membr Biol 247(9–10):897–908.  https://doi.org/10.1007/s00232-014-9725-1CrossRefPubMedGoogle Scholar
  18. 18.
    Le Bon C, Marconnet A, Masscheleyn S, Popot JL, Zoonens M (2018) Folding and stabilizing membrane proteins in amphipol A8-35. Methods 147:95–105.  https://doi.org/10.1016/j.ymeth.2018.04.012CrossRefPubMedGoogle Scholar
  19. 19.
    Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot JL (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22(3):1281–1290.  https://doi.org/10.1021/la052243gCrossRefPubMedGoogle Scholar
  20. 20.
    Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot JL, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27(17):10523–10537.  https://doi.org/10.1021/la202103vCrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Barrera NP, Zhou M, Robinson CV (2013) The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 23(1):1–8.  https://doi.org/10.1016/j.tcb.2012.08.007CrossRefPubMedGoogle Scholar
  22. 22.
    Schmidpeter PAM, Gao X, Uphadyay V, Rheinberger J, Nimigean CM (2018) Ligand binding and activation properties of the purified bacterial cyclic nucleotide-gated channel SthK. J Gen Physiol 150(6):821–834.  https://doi.org/10.1085/jgp.201812023CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Martinez KL, Gohon Y, Corringer PJ, Tribet C, Mérola F, Changeux JP, Popot JL (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 528(1–3):251–256CrossRefGoogle Scholar
  24. 24.
    Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Banères JL (2010) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132(26):9049–9057.  https://doi.org/10.1021/ja101868cCrossRefPubMedGoogle Scholar
  25. 25.
    Charvolin D, Perez JB, Rouvière F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot JL (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci U S A 106(2):405–410.  https://doi.org/10.1073/pnas.0807132106CrossRefPubMedGoogle Scholar
  26. 26.
    Polovinkin V, Gushchin I, Sintsov M, Round E, Balandin T, Chervakov P, Shevchenko V, Utrobin P, Popov A, Borshchevskiy V, Mishin A, Kuklin A, Willbold D, Chupin V, Popot JL, Gordeliy V (2014) High-resolution structure of a membrane protein transferred from amphipol to a lipidic mesophase. J Membr Biol 247(9–10):997–1004.  https://doi.org/10.1007/s00232-014-9700-xCrossRefPubMedGoogle Scholar
  27. 27.
    van Pee K, Neuhaus A, D’Imprima E, Mills DJ, Kühlbrandt W, Yildiz Ö (2017) CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin. Elife 6.  https://doi.org/10.7554/eLife.23644
  28. 28.
    Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107–112.  https://doi.org/10.1038/nature12822CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hirschi M, Herzik MA, Wie J, Suo Y, Borschel WF, Ren D, Lander GC, Lee SY (2017) Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature 550(7676):411–414.  https://doi.org/10.1038/nature24055CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li M, Zhou X, Wang S, Michailidis I, Gong Y, Su D, Li H, Li X, Yang J (2017) Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542(7639):60–65.  https://doi.org/10.1038/nature20819CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sanders CR, Landis GC (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34(12):4030–4040CrossRefGoogle Scholar
  32. 32.
    Sanders CR, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31(37):8898–8905CrossRefGoogle Scholar
  33. 33.
    Ujwal R, Bowie JU (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55(4):337–341.  https://doi.org/10.1016/j.ymeth.2011.09.020CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387.  https://doi.org/10.1038/nature06325CrossRefGoogle Scholar
  35. 35.
    Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105(46):17742–17747.  https://doi.org/10.1073/pnas.0809634105CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316(1):1–6.  https://doi.org/10.1006/jmbi.2001.5295CrossRefPubMedGoogle Scholar
  37. 37.
    Kim DM, Dikiy I, Upadhyay V, Posson DJ, Eliezer D, Nimigean CM (2016) Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles. J Gen Physiol 148(2):119–132.  https://doi.org/10.1085/jgp.201611602CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dürr UH, Gildenberg M, Ramamoorthy A (2012) The magic of bicelles lights up membrane protein structure. Chem Rev 112(11):6054–6074.  https://doi.org/10.1021/cr300061wCrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    De Angelis AA, Opella SJ (2007) Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2(10):2332–2338.  https://doi.org/10.1038/nprot.2007.329CrossRefPubMedGoogle Scholar
  40. 40.
    Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104(8):3587–3606.  https://doi.org/10.1021/cr0304121CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Morrison EA, Henzler-Wildman KA (2012) Reconstitution of integral membrane proteins into isotropic bicelles with improved sample stability and expanded lipid composition profile. Biochim Biophys Acta 1818(3):814–820.  https://doi.org/10.1016/j.bbamem.2011.12.020CrossRefPubMedGoogle Scholar
  42. 42.
    Bibow S, Hiller S (2018) A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy. FEBS J 286:1610.  https://doi.org/10.1111/febs.14639CrossRefPubMedGoogle Scholar
  43. 43.
    Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126(11):3477–3487.  https://doi.org/10.1021/ja0393574CrossRefPubMedGoogle Scholar
  44. 44.
    Banerjee S, Huber T, Sakmar TP (2008) Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J Mol Biol 377(4):1067–1081.  https://doi.org/10.1016/j.jmb.2008.01.066CrossRefPubMedGoogle Scholar
  45. 45.
    Jonas A, Kézdy KE, Wald JH (1989) Defined apolipoprotein A-I conformations in reconstituted high density lipoprotein discs. J Biol Chem 264(9):4818–4824PubMedGoogle Scholar
  46. 46.
    Davidson WS, Thompson TB (2007) The structure of apolipoprotein A-I in high density lipoproteins. J Biol Chem 282(31):22249–22253.  https://doi.org/10.1074/jbc.R700014200CrossRefPubMedGoogle Scholar
  47. 47.
    Leitz AJ, Bayburt TH, Barnakov AN, Springer BA, Sligar SG (2006) Functional reconstitution of Beta2-adrenergic receptors utilizing self-assembling Nanodisc technology. Biotechniques 40(5):601–602, 604, 606, passim.  https://doi.org/10.2144/000112169CrossRefPubMedGoogle Scholar
  48. 48.
    Grinkova YV, Denisov IG, Sligar SG (2010) Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng Des Sel 23(11):843–848.  https://doi.org/10.1093/protein/gzq060CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Chapter 11: Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231.  https://doi.org/10.1016/S0076-6879(09)64011-8CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Efremov RG, Gatsogiannis C, Raunser S (2017) Lipid nanodiscs as a tool for high-resolution structure determination of membrane proteins by single-particle cryo-EM. Methods Enzymol 594:1–30.  https://doi.org/10.1016/bs.mie.2017.05.007CrossRefPubMedGoogle Scholar
  51. 51.
    McLean MA, Gregory MC, Sligar SG (2018) Nanodiscs: a controlled bilayer surface for the study of membrane proteins. Annu Rev Biophys 47:107.  https://doi.org/10.1146/annurev-biophys-070816-033620CrossRefGoogle Scholar
  52. 52.
    Bibow S, Polyhach Y, Eichmann C, Chi CN, Kowal J, Albiez S, McLeod RA, Stahlberg H, Jeschke G, Güntert P, Riek R (2017) Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat Struct Mol Biol 24(2):187–193.  https://doi.org/10.1038/nsmb.3345CrossRefPubMedGoogle Scholar
  53. 53.
    Morgan CR, Hebling CM, Rand KD, Stafford DW, Jorgenson JW, Engen JR (2011) Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs. Mol Cell Proteomics 10(9):M111.010876.  https://doi.org/10.1074/mcp.M111.010876CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Schuler MA, Denisov IG, Sligar SG (2013) Nanodiscs as a new tool to examine lipid-protein interactions. Methods Mol Biol 974:415–433.  https://doi.org/10.1007/978-1-62703-275-9_18CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584(9):1721–1727.  https://doi.org/10.1016/j.febslet.2009.10.024CrossRefPubMedGoogle Scholar
  56. 56.
    Koehl A, Hu H, Feng D, Sun B, Zhang Y, Robertson MJ, Chu M, Kobilka TS, Laermans T, Steyaert J, Tarrasch J, Dutta S, Fonseca R, Weis WI, Mathiesen JM, Skiniotis G, Kobilka BK (2019) Structural insights into the activation of metabotropic glutamate receptors. Nature 566(7742):79–84.  https://doi.org/10.1038/s41586-019-0881-4CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rheinberger J, Gao X, Schmidpeter PA, Nimigean CM (2018) Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures. Elife 7.  https://doi.org/10.7554/eLife.39775
  58. 58.
    Kalienkova V, Clerico Mosina V, Bryner L, Oostergetel GT, Dutzler R, Paulino C (2019) Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM. Elife 8.  https://doi.org/10.7554/eLife.44364
  59. 59.
    Quentin D, Ahmad S, Shanthamoorthy P, Mougous JD, Whitney JC, Raunser S (2018) Mechanism of loading and translocation of type VI secretion system effector Tse6. Nat Microbiol 3(10):1142–1152.  https://doi.org/10.1038/s41564-018-0238-zCrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Falzone ME, Rheinberger J, Lee BC, Peyear T, Sasset L, Raczkowski AM, Eng ET, Di Lorenzo A, Andersen OS, Nimigean CM, Accardi A (2019) Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase. Elife 8.  https://doi.org/10.7554/eLife.43229
  61. 61.
    Bayburt TH, Sligar SG (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12(11):2476–2481.  https://doi.org/10.1110/ps.03267503CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Boldog T, Grimme S, Li M, Sligar SG, Hazelbauer GL (2006) Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci U S A 103(31):11509–11514.  https://doi.org/10.1073/pnas.0604988103CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Li Y, Soubias O, Li J, Sun S, Randazzo PA, Byrd RA (2019) Functional expression and characterization of human myristoylated-Arf1 in nanodisc membrane mimetics. Biochemistry 58:1423.  https://doi.org/10.1021/acs.biochem.8b01323CrossRefPubMedGoogle Scholar
  64. 64.
    Tsukamoto H, Szundi I, Lewis JW, Farrens DL, Kliger DS (2011) Rhodopsin in nanodiscs has native membrane-like photointermediates. Biochemistry 50(22):5086–5091.  https://doi.org/10.1021/bi200391aCrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ranaghan MJ, Schwall CT, Alder NN, Birge RR (2011) Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 133(45):18318–18327.  https://doi.org/10.1021/ja2070957CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mörs K, Roos C, Scholz F, Wachtveitl J, Dötsch V, Bernhard F, Glaubitz C (2013) Modified lipid and protein dynamics in nanodiscs. Biochim Biophys Acta 1828(4):1222–1229.  https://doi.org/10.1016/j.bbamem.2012.12.011CrossRefPubMedGoogle Scholar
  67. 67.
    Inagaki S, Ghirlando R, Grisshammer R (2013) Biophysical characterization of membrane proteins in nanodiscs. Methods 59(3):287–300.  https://doi.org/10.1016/j.ymeth.2012.11.006CrossRefPubMedGoogle Scholar
  68. 68.
    Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2(8):853–856.  https://doi.org/10.1021/nl025623kCrossRefGoogle Scholar
  69. 69.
    Hagn F, Nasr ML, Wagner G (2018) Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat Protoc 13(1):79–98.  https://doi.org/10.1038/nprot.2017.094CrossRefPubMedGoogle Scholar
  70. 70.
    Mäler L, Gräslund A (2009) Artificial membrane models for the study of macromolecular delivery. Methods Mol Biol 480:129–139.  https://doi.org/10.1007/978-1-59745-429-2_9CrossRefPubMedGoogle Scholar
  71. 71.
    Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135(5):1919–1925.  https://doi.org/10.1021/ja310901fCrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Nasr ML, Baptista D, Strauss M, Sun ZJ, Grigoriu S, Huser S, Plückthun A, Hagn F, Walz T, Hogle JM, Wagner G (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14(1):49–52.  https://doi.org/10.1038/nmeth.4079CrossRefPubMedGoogle Scholar
  73. 73.
    Yusuf Y, Massiot J, Chang YT, Wu PH, Yeh V, Kuo PC, Shiue J, Yu TY (2018) Optimization of the production of covalently circularized nanodiscs and their characterization in physiological conditions. Langmuir 34(11):3525–3532.  https://doi.org/10.1021/acs.langmuir.8b00025CrossRefPubMedGoogle Scholar
  74. 74.
    Miehling J, Goricanec D, Hagn F (2018) A split-intein-based method for the efficient production of circularized nanodiscs for structural studies of membrane proteins. Chembiochem 19(18):1927–1933.  https://doi.org/10.1002/cbic.201800345CrossRefPubMedGoogle Scholar
  75. 75.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77CrossRefGoogle Scholar
  76. 76.
    Mazhab-Jafari MT, Marshall CB, Smith MJ, Gasmi-Seabrook GM, Stathopulos PB, Inagaki F, Kay LE, Neel BG, Ikura M (2015) Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. Proc Natl Acad Sci U S A 112(21):6625–6630.  https://doi.org/10.1073/pnas.1419895112CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612.  https://doi.org/10.1002/jcc.20084CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Philipp A. M. Schmidpeter
    • 1
  • Nattakan Sukomon
    • 1
  • Crina M. Nimigean
    • 1
    • 2
    Email author
  1. 1.Department of AnesthesiologyWeill Cornell MedicineNew YorkUSA
  2. 2.Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkUSA

Personalised recommendations