Protocols for Studying Murine ILC Development

  • Matthew T. Stier
  • R. Stokes PeeblesJrEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2121)


Understanding the origins and developmental trajectory of innate lymphoid cell (ILC) progenitors has been of substantial interest to the fields of ILC biology and immunology. While mature ILC are rare lymphocytes, ILC progenitors represent an even smaller fraction of cells, providing additional challenges in studying them. Moreover, though the approaches to studying these cells are conceptually straightforward, the technical nuances that underlie them can substantially affect the quality of the data. Herein, we provide a detailed protocol for assessing the frequency of ILC progenitors in the bone marrow, their phenotype, and their potential to develop into mature ILC. These methods make up the foundation of in vivo investigations into ILC development, and we hope these thorough protocols and associated notes facilitate additional, high-quality inquiries into this fascinating field.

Key words

Innate lymphoid cells (ILC) Natural killer (NK) cells Common lymphoid progenitors Flow cytometry Adoptive transfer 



Optimization of the protocols described herein was supported by the National Institutes of Health (R01AI145265, R01AI124456, R01AI111820, R21AI145397, and U19AI095227) and the US Department of Veterans Affairs (I01BX004299).


  1. 1.
    Cherrier DE, Serafini N, Di Santo JP (2018) Innate lymphoid cell development: a T cell perspective. Immunity 48:1091–1103CrossRefGoogle Scholar
  2. 2.
    Stier MT, Peebles RS (2017) Innate lymphoid cells and allergic disease. Ann Allergy Asthma Immunol 119:480–488CrossRefGoogle Scholar
  3. 3.
    Ghaedi M, Steer CA, Martinez-Gonzalez I et al (2016) Common-lymphoid-progenitor-independent pathways of innate and T lymphocyte development. Cell Rep 15:471–480CrossRefGoogle Scholar
  4. 4.
    Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672CrossRefGoogle Scholar
  5. 5.
    Wong SH, Walker JA, Jolin HE et al (2012) Transcription factor RORα is critical for nuocyte development. Nat Immunol 13:229–236CrossRefGoogle Scholar
  6. 6.
    Hoyler T, Klose CSN, Souabni A et al (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37:634–648CrossRefGoogle Scholar
  7. 7.
    Klose CSN, Flach M, Möhle L et al (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:340–356CrossRefGoogle Scholar
  8. 8.
    Satoh-Takayama N, Lesjean-Pottier S, Vieira P et al (2010) IL-7 and IL-15 independently program the differentiation of intestinal CD3NKp46+ cell subsets from Id2-dependent precursors. J Exp Med 207:273–280CrossRefGoogle Scholar
  9. 9.
    Moro K, Yamada T, Tanabe M et al (2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540–544CrossRefGoogle Scholar
  10. 10.
    Yang Q, Li F, Harly C et al (2015) TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol 16:1044–1050CrossRefGoogle Scholar
  11. 11.
    Constantinides MG, McDonald BD, Verhoef PA et al (2014) A committed precursor to innate lymphoid cells. Nature 508:397CrossRefGoogle Scholar
  12. 12.
    Yu Y, Tsang JCH, Wang C et al (2016) Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature 539:102–106CrossRefGoogle Scholar
  13. 13.
    Zook EC, Ramirez K, Guo X et al (2016) The ETS1 transcription factor is required for the development and cytokine-induced expansion of ILC2. J Exp Med 213:687–696CrossRefGoogle Scholar
  14. 14.
    Stier MT, Zhang J, Goleniewska K et al (2018) IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow. J Exp Med 215:263–281CrossRefGoogle Scholar
  15. 15.
    de Kleer IM, Kool M, de Bruijn MJW et al (2016) Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity 45:1285–1298CrossRefGoogle Scholar
  16. 16.
    Saluzzo S, Gorki A-D, Rana BMJ et al (2017) First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep 18:1893–1905CrossRefGoogle Scholar
  17. 17.
    Steer CA, Martinez-Gonzalez I, Ghaedi M et al (2017) Group 2 innate lymphoid cell activation in the neonatal lung drives type 2 immunity and allergen sensitization. J Allergy Clin Immunol 140:593CrossRefGoogle Scholar
  18. 18.
    Karta MR, Rosenthal PS, Beppu A et al (2018) β2 integrins rather than β1 integrins mediate Alternaria-induced ILC2 trafficking to the lung. J Allergy Clin Immunol 141(1):329–338.e12CrossRefGoogle Scholar
  19. 19.
    Huang Y, Mao K, Chen X et al (2018) S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359:114–119CrossRefGoogle Scholar
  20. 20.
    Kim MH, Taparowsky EJ, Kim CH (2015) Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43:107–119CrossRefGoogle Scholar
  21. 21.
    Gasteiger G, Fan X, Dikiy S et al (2015) Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350:981–985CrossRefGoogle Scholar
  22. 22.
    O’Sullivan TE, Rapp M, Fan X et al (2016) Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 45:428–441CrossRefGoogle Scholar
  23. 23.
    Nussbaum JC, Van Dyken SJ, von Moltke J et al (2013) Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502:245–248CrossRefGoogle Scholar
  24. 24.
    Schneider C, Lee J, Koga S et al (2019) Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity 50:1425CrossRefGoogle Scholar
  25. 25.
    Bando JK, Liang H-E, Locksley RM (2015) Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat Immunol 16:153–160CrossRefGoogle Scholar
  26. 26.
    Koga S, Hozumi K, Hirano K et al (2018) Peripheral PDGFRα+ gp38+ mesenchymal cells support the differentiation of fetal liver-derived ILC2. J Exp Med 215:1609–1626CrossRefGoogle Scholar
  27. 27.
    Xu W, Cherrier DE, Chea S et al (2019) An Id2RFP-reporter mouse redefines innate lymphoid cell precursor potentials. Immunity 50:1054–1068.e3CrossRefGoogle Scholar
  28. 28.
    Yu X, Wang Y, Deng M et al (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. Elife 3.
  29. 29.
    Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69A:1037–1042CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations