Advertisement

CRISPR/Cas9-Based Gene Engineering of Human Natural Killer Cells: Protocols for Knockout and Readouts to Evaluate Their Efficacy

  • Mélanie Lambert
  • Caroline Leijonhufvud
  • Filip Segerberg
  • J. Joseph Melenhorst
  • Mattias CarlstenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2121)

Abstract

Natural killer (NK) cells are cytotoxic lymphocytes of our immune system with the ability to identify and kill certain virally infected and tumor-transformed cells. During the past 15 years, it has become increasingly clear that NK cells are involved in tumor immune surveillance and that they can be utilized to treat cancer patients. However, their ability to induce durable responses in settings of adoptive cell therapy needs to be further improved. One possible approach is to genetically engineer NK cells to augment their cytotoxicity per se, but also their ability to persist in vivo and home to the tumor-bearing tissue. In recent years, investigators have explored the potential of viral transduction and mRNA electroporation to modify NK cells. Although these methods have generated promising data, they are associated with certain limitations. With the increasing advances in the CRISPR/Cas9 technology, investigators have now turned their attention toward using this technology with NK cells as an alternative method. In this book chapter, we introduce NK cells and provide an historical overview of techniques to genetically engineer lymphocytes. Further, we elucidate protocols for inducing double-strand breaks in NK cells via CRISPR/Cas9 together with readouts to address its efficacy and functional outcome. We also discuss the pros and cons of the described readouts. The overall aim of this book chapter is to help introduce the CRISPR/Cas9 technology to the broader audience of NK cell researchers.

Key words

NK cells Gene editing CRISPR/Cas9 Flow cytometry RT-PCR DNA sequencing Digital droplet PCR 

Notes

Acknowledgements

We would like to acknowledge Marios Dimitriou and Teresa Montera Blanco for support with establishing the ddPCR technology and the MedH Flow Cytometry core facility (Karolinska Institutet), supported by KI/SLL, for providing cell analysis services. This work has been supported by funding from Swedish Society for Medicine, Wallenberg Clinical Fellow, Swedish Cancer Foundation, Swedish Childhood Cancer Association, and the Swedish Research Council.

References

  1. 1.
    Herberman RB, Nunn ME, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16:216–229.  https://doi.org/10.1002/ijc.2910160204CrossRefPubMedGoogle Scholar
  2. 2.
    Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16:230–239.  https://doi.org/10.1002/ijc.2910160205CrossRefGoogle Scholar
  3. 3.
    Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117.  https://doi.org/10.1002/eji.1830050208CrossRefPubMedGoogle Scholar
  4. 4.
    Kiessling R, Klein E, Pross H, Wigzell H (1975) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5:117–121.  https://doi.org/10.1002/eji.1830050209CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    O’Sullivan TE, Sun JC, Lanier LL (2015) Natural killer cell memory. Immunity 43:634–645.  https://doi.org/10.1016/j.immuni.2015.09.013CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510.  https://doi.org/10.1038/ni1582CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dosiou C, Giudice LC (2005) Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev 26:44–62.  https://doi.org/10.1210/er.2003-0021CrossRefPubMedGoogle Scholar
  8. 8.
    Moffett-King A (2002) Natural killer cells and pregnancy. Nat Rev Immunol 2:656–663.  https://doi.org/10.1038/nri886CrossRefPubMedGoogle Scholar
  9. 9.
    Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31:227–258.  https://doi.org/10.1146/annurev-immunol-020711-075005CrossRefPubMedGoogle Scholar
  10. 10.
    Anfossi N, André P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D et al (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25:331–342.  https://doi.org/10.1016/j.immuni.2006.06.013CrossRefPubMedGoogle Scholar
  11. 11.
    Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91.  https://doi.org/10.1111/j.1600-065X.2006.00457.xCrossRefPubMedGoogle Scholar
  12. 12.
    Chester C, Fritsch K, Kohrt HE (2015) Natural killer cell immunomodulation: targeting activating, inhibitory, and co-stimulatory receptor signaling for cancer immunotherapy. Front Immunol 6:601.  https://doi.org/10.3389/fimmu.2015.00601CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bryceson YT, March ME, Barber DF, Ljunggren H-G, Long EO (2005) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:1001–1012.  https://doi.org/10.1084/jem.20051143CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Screpanti V, Wallin RP, Ljunggren HG, Grandien A (2001) A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells. J Immunol 167:2068–2073.  https://doi.org/10.4049/jimmunol.167.4.2068CrossRefPubMedGoogle Scholar
  15. 15.
    Raulet DH (2004) Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5:996–1002.  https://doi.org/10.1038/ni1114CrossRefPubMedGoogle Scholar
  16. 16.
    Salagianni M, Lekka E, Moustaki A, Iliopoulou EG, Baxevanis CN, Papamichail M, Perez SA (2011) NK cell adoptive transfer combined with Ontak-mediated regulatory T cell elimination induces effective adaptive antitumor immune responses. J Immunol 186:3327–3335.  https://doi.org/10.4049/jimmunol.1000652CrossRefPubMedGoogle Scholar
  17. 17.
    Pallmer K, Oxenius A (2016) Recognition and regulation of T cells by NK cells. Front Immunol 7:251.  https://doi.org/10.3389/fimmu.2016.00251CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Malmberg KJ, Carlsten M, Björklund A, Sohlberg E, Bryceson YT, Ljunggren HG (2017) Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol 31:20–29.  https://doi.org/10.1016/j.smim.2017.08.002CrossRefPubMedGoogle Scholar
  19. 19.
    Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356:1795–1799.  https://doi.org/10.1016/S0140-6736(00)03231-1CrossRefPubMedGoogle Scholar
  20. 20.
    Nakata J, Nakano K, Okumura A, Mizutani Y, Kinoshita H, Iwai M, Hasegawa K, Morimoto S, Fujiki F, Tatsumi N et al (2014) In vivo eradication of MLL/ENL leukemia cells by NK cells in the absence of adaptive immunity. Leukemia 28:1316–1325.  https://doi.org/10.1038/leu.2013.374CrossRefPubMedGoogle Scholar
  21. 21.
    Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D, Greenberg NR, Raulet DH (2008) NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28:571–580.  https://doi.org/10.1016/j.immuni.2008.02.016CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, Yasui T, Kikutani H, Shibuya K, Shibuya A (2008) Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med 205:2959–2964.  https://doi.org/10.1084/jem.20081611CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F et al (2002) Effectiveness of donor natural killer cell aloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100.  https://doi.org/10.1126/science.1068440CrossRefPubMedGoogle Scholar
  24. 24.
    Hsu KC, Keever-Taylor CA, Wilton A, Pinto C, Heller G, Arkun K, O’Reilly RJ, Horowitz MM, Dupont B (2005) Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 105:4878–4884.  https://doi.org/10.1182/blood-2004-12-4825CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Le CT, Marsh SGE, Geraghty D, Spellman S, Haagenson MD et al (2010) Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 116:2411–2419.  https://doi.org/10.1182/blood-2010-05-283051CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cichocki F, Taras E, Chiuppesi F, Wagner JE, Blazar BR, Brunstein C, Luo X, Diamond DJ, Cooley S, Weisdorf DJ et al (2019) Adaptive NK cell reconstitution is associated with better clinical outcomes. JCI Insight 4:2.  https://doi.org/10.1172/jci.insight.125553CrossRefGoogle Scholar
  27. 27.
    Childs RW, Carlsten M (2015) Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov 14:487–498.  https://doi.org/10.1038/nrd4506CrossRefPubMedGoogle Scholar
  28. 28.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057.  https://doi.org/10.1182/blood-2004-07-2974CrossRefPubMedGoogle Scholar
  29. 29.
    Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, Pui CH, Leung W (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 28:955–959.  https://doi.org/10.1200/JCO.2009.24.4590CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kottaridis PD, North J, Tsirogianni M, Marden C, Samuel ER, Jide-Banwo S, Grace S, Lowdell MW (2015) Two-stage priming of allogeneic natural killer cells for the treatment of patients with acute myeloid leukemia: a phase I trial. PLoS One 10:6.  https://doi.org/10.1371/journal.pone.0123416CrossRefGoogle Scholar
  31. 31.
    Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, Leong JW, Abdel-Latif S, Schneider SE, Willey S et al (2016) Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 8:357.  https://doi.org/10.1126/scitranslmed.aaf2341CrossRefGoogle Scholar
  32. 32.
    Bjorklund AT, Carlsten M, Sohlberg E, Liu LL, Clancy T, Karimi M, Cooley S, Miller JS, Klimkowska M, Schaffer M et al (2018) Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML. Clin Cancer Res 24:1834–1844.  https://doi.org/10.1158/1078-0432.CCR-17-3196CrossRefPubMedGoogle Scholar
  33. 33.
    Curti A, Ruggeri L, Parisi S, Bontadini A, Dan E, Motta MR, Rizzi S, Trabanelli S, Ocadlikova D, Lecciso M et al (2016) Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. Clin Cancer Res 22:1914–1921.  https://doi.org/10.1158/1078-0432.CCR-15-1604CrossRefPubMedGoogle Scholar
  34. 34.
    Fehniger TA, Miller JS, Stuart RK, Cooley S, Salhotra A, Curtsinger J, Westervelt P, DiPersio JF, Hillman TM, Silver N et al (2018) A phase 1 trial of CNDO-109-activated natural killer cells in patients with high-risk acute myeloid leukemia. Biol Blood Marrow Transplant 24:1581–1589.  https://doi.org/10.1016/j.bbmt.2018.03.019CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lee DA, Denman CJ, Rondon G, Woodworth G, Chen J, Fisher T, Kaur I, Fernandez-Vina M, Cao K, Ciurea S et al (2016) Haploidentical natural killer cells infused before allogeneic stem cell transplantation for myeloid malignancies: a phase I trial. Biol Blood Marrow Transplant 22:1290–1298.  https://doi.org/10.1016/j.bbmt.2016.04.009CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467.  https://doi.org/10.1016/0042-6822(73)90341-3CrossRefPubMedGoogle Scholar
  37. 37.
    Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6329708CrossRefGoogle Scholar
  38. 38.
    Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, Rosenberg SA, Morgan RA (2006) High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 13:151–159.  https://doi.org/10.1016/j.ymthe.2005.07.688CrossRefPubMedGoogle Scholar
  39. 39.
    Van Tendeloo VFI, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98:49–56.  https://doi.org/10.1182/blood.V98.1.49CrossRefPubMedGoogle Scholar
  40. 40.
    Huerfano S, Ryabchenko B, Forstová J (2013) Nucleofection of expression vectors induces a robust interferon response and inhibition of cell proliferation. DNA Cell Biol 32:467–479.  https://doi.org/10.1089/dna.2012.1950CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745.  https://doi.org/10.1038/35047123CrossRefPubMedGoogle Scholar
  42. 42.
    Chuang T-H, Lee J, Kline L, Mathison JC, Ulevitch RJ (2002) Toll-like receptor 9 mediates CpG-DNA signaling. J Leukoc Biol 71:538–544. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11867692PubMedGoogle Scholar
  43. 43.
    Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272.  https://doi.org/10.1038/ni.1702CrossRefPubMedGoogle Scholar
  44. 44.
    Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES (2009) {AIM2} activates the inflammasome and cell death in response to cytoplasmic {DNA}. Nature 458:509–513.  https://doi.org/10.1038/nature07710CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) {AIM2} recognizes cytosolic {dsDNA} and forms a caspase-1-activating inflammasome with {ASC}. Nature 458:514–518.  https://doi.org/10.1038/nature07725CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, Simithy J, Lan Y, Lin Y, Zhou Z et al (2017) Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550:402–406.  https://doi.org/10.1038/nature24050CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Karikó K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279:12542–12550.  https://doi.org/10.1074/jbc.M310175200CrossRefPubMedGoogle Scholar
  48. 48.
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis E, Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531.  https://doi.org/10.1126/science.1093616CrossRefPubMedGoogle Scholar
  49. 49.
    Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997.  https://doi.org/10.1126/science.1132505CrossRefPubMedGoogle Scholar
  50. 50.
    Nallagatla SR, Hwang J, Toroney R, Zheng X, Cameron CE, Bevilacqua PC (2007) 5′-Triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318:1455–1458.  https://doi.org/10.1126/science.1147347CrossRefPubMedGoogle Scholar
  51. 51.
    Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791.  https://doi.org/10.1126/science.1232458CrossRefPubMedGoogle Scholar
  52. 52.
    Karikó K, Muramatsu H, Keller JM, Weissman D (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20:948–953.  https://doi.org/10.1038/mt.2012.7CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL et al (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70:9053–9061.  https://doi.org/10.1158/0008-5472.CAN-10-2880CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Beatty GL, O’Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, Kulikovskaya IM, Soulen MC, McGarvey M, Nelson AM et al (2018) Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155:29–32.  https://doi.org/10.1053/j.gastro.2018.03.029CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB et al (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33:985–989.  https://doi.org/10.1038/nbt.3290CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Karikó K (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38:5884–5892.  https://doi.org/10.1093/nar/gkq347CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, Forman SJ (2010) Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 16:1245–1256.  https://doi.org/10.1016/j.bbmt.2010.03.014CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980–990PubMedPubMedCentralGoogle Scholar
  59. 59.
    Miller AD, Buttimore C (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6:2895–2902. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3785217CrossRefGoogle Scholar
  60. 60.
    Danos O, Mulligan RC (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci U S A 85:6460–6464. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3413107CrossRefGoogle Scholar
  61. 61.
    Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2370865CrossRefGoogle Scholar
  62. 62.
    Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay J-P, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193.  https://doi.org/10.1056/nejmoa012616CrossRefPubMedGoogle Scholar
  63. 63.
    Cavazzana-Calvo M, Hacein-Bey S, De Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672.  https://doi.org/10.1126/science.288.5466.669CrossRefPubMedGoogle Scholar
  64. 64.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval J-L, Fraser CC, Cavazzana-Calvo M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256.  https://doi.org/10.1056/nejm200301163480314CrossRefPubMedGoogle Scholar
  65. 65.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419.  https://doi.org/10.1126/science.1088547CrossRefPubMedGoogle Scholar
  66. 66.
    Modlich U, Bohne J, Schmidt M, Von Kalle C, Knöss S, Schambach A, Baum C (2006) Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 108:2545–2553.  https://doi.org/10.1182/blood-2005-08-024976CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Cavazzana M, Bushman FD, Miccio A, André-Schmutz I, Six E (2019) Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 18:447.  https://doi.org/10.1038/s41573-019-0020-9CrossRefPubMedGoogle Scholar
  68. 68.
    Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL et al (2010) Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323:570–578.  https://doi.org/10.1056/nejm199008303230904CrossRefGoogle Scholar
  69. 69.
    Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93:11382–11388.  https://doi.org/10.1073/pnas.93.21.11382CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267.  https://doi.org/10.1126/science.272.5259.263CrossRefPubMedGoogle Scholar
  71. 71.
    Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9811723CrossRefGoogle Scholar
  72. 72.
    Mitchell RS, Beitzel BF, Schroder ARW, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:8.  https://doi.org/10.1371/journal.pbio.0020234CrossRefGoogle Scholar
  73. 73.
    Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR (2002) Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12202041CrossRefGoogle Scholar
  74. 74.
    Marcucci KT, Jadlowsky JK, Hwang WT, Suhoski-Davis M, Gonzalez VE, Kulikovskaya I, Gupta M, Lacey SF, Plesa G, Chew A et al (2018) Retroviral and lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. Mol Ther 26:269–279.  https://doi.org/10.1016/j.ymthe.2017.10.012CrossRefPubMedGoogle Scholar
  75. 75.
    Cesana D, Volpin M, Serina Secanechia YN, Montini E Safety and efficacy of retroviral and lentiviral vectors for gene therapy. In: Safety and efficacy of gene-based therapeutics for inherited disorders. Springer, New York, pp 9–35.  https://doi.org/10.1007/978-3-319-53457-2_2CrossRefGoogle Scholar
  76. 76.
    Cornetta K, Duffy L, Turtle CJ, Jensen M, Forman S, Binder-Scholl G, Fry T, Chew A, Maloney DG, June CH (2018) Absence of replication-competent lentivirus in the clinic: analysis of infused T cell products. Mol Ther 26:280–288.  https://doi.org/10.1016/j.ymthe.2017.09.008CrossRefPubMedGoogle Scholar
  77. 77.
    Lyon D, Lapteva N, Gee AP (2018) Absence of replication-competent retrovirus in vectors, T cell products, and patient follow-up samples. Mol Ther 26:6–7.  https://doi.org/10.1016/j.ymthe.2017.12.003CrossRefPubMedGoogle Scholar
  78. 78.
    Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, Jena B, Dawson MJ, Kumaresan PR, Su S et al (2016) Phase I trials using sleeping beauty to generate {CD19}-specific {CAR} T cells. J Clin Invest 126:3363–3376.  https://doi.org/10.1172/JCI86721CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gregory T, Cohen A, Costello C (2018) Efficacy and safety of P-Bcma-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM). Blood 132:1012.  https://doi.org/10.1182/blood-2018-99-111419CrossRefGoogle Scholar
  80. 80.
    Huang X, Guo H, Tammana S, Jung YC, Mellgren E, Bassi P, Cao Q, Tu ZJ, Kim YC, Ekker SC et al (2010) Gene transfer efficiency and genome-wide integration profiling of sleeping beauty, Tol2, and PiggyBac transposons in human primary t cells. Mol Ther 18:1803–1813.  https://doi.org/10.1038/mt.2010.141CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Woods NB, Muessig A, Schmidt M, Flygare J, Olsson K, Salmon P, Trono D, Von Kalle C, Karlsson S (2003) Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 101:1284–1289.  https://doi.org/10.1182/blood-2002-07-2238CrossRefPubMedGoogle Scholar
  82. 82.
    Espinoza DA, Fan X, Yang D, Cordes SF, Truitt LL, Calvo KR, Yabe IM, Demirci S, Hope KJ, Hong SG et al (2019) Aberrant clonal hematopoiesis following lentiviral vector transduction of HSPCs in a rhesus macaque. Mol Ther 27:1074–1086.  https://doi.org/10.1016/j.ymthe.2019.04.003CrossRefPubMedGoogle Scholar
  83. 83.
    Newrzela S, Cornils K, Li Z, Baum C, Brugman MH, Hartmann M, Meyer J, Hartmann S, Hansmann ML, Fehse B et al (2008) Resistance of mature T cells to oncogene transformation. Blood 112:2278–2286.  https://doi.org/10.1182/blood-2007-12-128751CrossRefPubMedGoogle Scholar
  84. 84.
    Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317:230–234.  https://doi.org/10.1038/317230a0CrossRefPubMedGoogle Scholar
  85. 85.
    Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–428.  https://doi.org/10.1016/0092-8674(86)90463-0CrossRefPubMedGoogle Scholar
  86. 86.
    Simeonov DR, Marson A (2019) CRISPR-based tools in immunity. Annu Rev Immunol 37:571–597.  https://doi.org/10.1146/annurev-immunol-042718-041522CrossRefPubMedGoogle Scholar
  87. 87.
    Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501.  https://doi.org/10.1126/science.1178817CrossRefPubMedGoogle Scholar
  88. 88.
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:756–761.  https://doi.org/10.1534/genetics.110.120717CrossRefGoogle Scholar
  89. 89.
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651.  https://doi.org/10.1038/nature03556CrossRefPubMedGoogle Scholar
  90. 90.
    Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard BL, Certo MT, Baker D et al (2014) MegaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res 42:2591–2601.  https://doi.org/10.1093/nar/gkt1224CrossRefPubMedGoogle Scholar
  91. 91.
    Porteus M (2015) Genome editing: a new approach to human therapeutics. Annu Rev Pharmacol Toxicol 56:163–190.  https://doi.org/10.1146/annurev-pharmtox-010814-124454CrossRefPubMedGoogle Scholar
  92. 92.
    Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, Odak A, Gönen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:113–117.  https://doi.org/10.1038/nature21405CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    MacLeod DT, Antony J, Martin AJ, Moser RJ, Hekele A, Wetzel KJ, Brown AE, Triggiano MA, Hux JA, Pham CD et al (2017) Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol Ther 25:949–961.  https://doi.org/10.1016/j.ymthe.2017.02.005CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Hale M, Lee B, Honaker Y, Leung WH, Grier AE, Jacobs HM, Sommer K, Sahni J, Jackson SW, Scharenberg AM et al (2017) Homology-directed recombination for enhanced engineering of chimeric antigen receptor T cells. Mol Ther Methods Clin Dev 4:192–203.  https://doi.org/10.1016/j.omtm.2016.12.008CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Porteus MH (2019) A new class of medicines through DNA editing. N Engl J Med 380:947–959.  https://doi.org/10.1056/NEJMra1800729CrossRefPubMedGoogle Scholar
  96. 96.
    Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, Hiatt J, Saco J, Krystofinski P, Li H et al (2018) Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559:405–409.  https://doi.org/10.1038/s41586-018-0326-5CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Nguyen DN, Roth TL, Li J, Chen PA, Mamedov MR, Vo LT, Tobin V, Apathy R, Goodman D, Shifrut E, et al (2019) A Cas9 nanoparticle system with truncated Cas9 target sequences on DNA repair templates enhances genome targeting in diverse human immune cell types. bioRxiv 591719.  https://doi.org/10.1101/591719
  98. 98.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826.  https://doi.org/10.1126/science.1232033CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A et al (2018) Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32:520–531.  https://doi.org/10.1038/leu.2017.226CrossRefPubMedGoogle Scholar
  100. 100.
    Carlsten M, Levy E, Karambelkar A, Li L, Reger R, Berg M, Peshwa MV, Childs RW (2016) Efficient mRNA-based genetic engineering of human NK cells with high-affinity CD16 and CCR7 augments rituximab-induced ADCC against lymphoma and targets NK cell migration toward the lymph node-associated chemokine CCL19. Front Immunol 7:105.  https://doi.org/10.3389/fimmu.2016.00105CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Levy E, Reger R, Segerberg F, Lambert M, Leijonhufvud C, Baumer Y, Carlsten M, Childs R (2019) Enhanced bone marrow homing of natural killer cells following mRNA transfection with gain-of-function variant CXCR4R334X. Front Immunol 10:1262.  https://doi.org/10.3389/fimmu.2019.01262. eCollection 2019CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Rautela J, Surgenor E, Huntington ND (2018) Efficient genome editing of human natural killer cells by CRISPR RNP. bioRxiv 406934.  https://doi.org/10.1101/406934
  103. 103.
    Naeimi Kararoudi M, Dolatshad H, Trikha P, Hussain S-RA, Elmas E, Foltz JA, Moseman JE, Thakkar A, Nakkula RJ, Lamb M et al (2018) Generation of knock-out primary and expanded human NK cells using Cas9 ribonucleoproteins. J Vis Exp 14:136.  https://doi.org/10.3791/58237CrossRefGoogle Scholar
  104. 104.
    Noda M, Omatsu Y, Sugiyama T, Oishi S, Fujii N, Nagasawa T (2011) CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adult mice. Blood 117:451–458.  https://doi.org/10.1182/blood-2010-04-277897CrossRefPubMedGoogle Scholar
  105. 105.
    (2018) Keep calm and edit on. Nat Biotechnol 36:667–667.  https://doi.org/10.1038/nbt.4221
  106. 106.
    Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering crispr: a review of the challenges and approaches. Drug Deliv 25:1234–1257.  https://doi.org/10.1080/10717544.2018.1474964CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Mélanie Lambert
    • 1
  • Caroline Leijonhufvud
    • 1
  • Filip Segerberg
    • 1
  • J. Joseph Melenhorst
    • 2
    • 3
    • 4
    • 5
  • Mattias Carlsten
    • 1
    Email author
  1. 1.Center for Hematology and Regenerative Medicine, Department of Medicine, HuddingeKarolinska InstitutetStockholmSweden
  2. 2.Center for Cellular ImmunotherapiesPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  3. 3.Institute for ImmunologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  5. 5.Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations