Advertisement

Production of Virus-Resistant Plants Through Transgenic Approaches

  • Alangar Ishwara Bhat
  • Govind Pratap Rao
Protocol
  • 52 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Production of transgenic plants for virus resistance is one of the success stories of genetic engineering that produce long-lasting and protected virus resistance, enabling the production of crops at commercial level. Of the various transgenes, use of translatable or non-translatable regions of the virus genome is the most successful approaches for developing virus-resistant varieties (known as pathogen-derived resistance, PDR). Of the various virus sequences, coat protein gene is the most widely used to engineer transgenic resistance. Availability of reliable regeneration systems, gene constructs in appropriate vectors, plant transformation techniques, selection of transgenic plants, characterization and evaluation of transgenic plants for resistance and commercialization of the transgenic variety are the various steps in the production and commercialization of transgenic virus-resistant plants.

Key words

Transgenic resistance Coat protein-mediated resistance Genetic engineering Plant transformation Transgenic plant Regeneration Pathogen-derived resistance Post-transcriptional gene silencing Viral suppressors of RNA silencing Agrobacterium-mediated genetic transformation Biolistic 

References

  1. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74:5350–5354PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barik DP, Mohapatra U, Chand PK (2005) Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium mediated transformation and regeneration. Plant Cell Rep 24:523–531PubMedCrossRefGoogle Scholar
  3. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12(26):8711–8721PubMedPubMedCentralCrossRefGoogle Scholar
  4. Block MD, Herrera EL, Vanmontagu M (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3:1681–1689PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bull SE, Owiti JA, Niklaus M, Beeching JR, Gruissem W, Vanderschuren H (2009) Agrobacterium mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat Protoc 4:1845–1854PubMedCrossRefGoogle Scholar
  6. Cai W, Gonalves C, Tennant P, Fermin G, Souza M, Sarinud N, Jan FJ, Zhu HY, Gonsalves D (1999) A protocol for efficient transformation and regeneration of Carica papaya L. InVitro Cell Dev Biol-Plant 35:61–69CrossRefGoogle Scholar
  7. Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56:601–611PubMedPubMedCentralCrossRefGoogle Scholar
  8. Dasgupta I, Malathi VG, Mukherjee SK (2003) Genetic engineering for virus resistance. Curr Sci 84:341–354Google Scholar
  9. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77:7347–7351PubMedPubMedCentralCrossRefGoogle Scholar
  10. Draper J, Scott R, Armitage P (1988) Plant genetic transformation and gene expression: a laboratory manual. Blackwell Scientific Publishers, OxfordGoogle Scholar
  11. Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JS (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194PubMedGoogle Scholar
  12. Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford C (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya. Biotechnology 10:1466–1472Google Scholar
  13. Framond AJ, Barton KA, Chilton MD (1983) Mini Ti: a new vector strategy for plant genetic engineering. Bio/Technology 1:262–269Google Scholar
  14. Fuchs M, Gonsalves D (1995) Resistance of transgenic squash Pavo ZW-20 expressing the coat protein genes of Zucchini yellow mosaic virus and Watermelon mosaic virus 2 to mixed infections by both potyviruses. BioTechnology 13:1466–1473Google Scholar
  15. Fuchs M, Tricoli DM, McMaster JM, Carney KJ, Schesser M (1998) Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis 82:1350–1356PubMedCrossRefGoogle Scholar
  16. Gelvin SB (2003) Agrobacterium mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37PubMedPubMedCentralCrossRefGoogle Scholar
  17. Glick E, Zrachya A, Levy Y, Mett A, Gidoni D et al (2008) Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci U S A 105:157–161PubMedCrossRefGoogle Scholar
  18. Gonzalez AE, Schöpke C, Taylor NJ, Beachy RN, Fauquet CM (1998) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium mediated transformation of embryogenic suspension cultures. Plant Cell Rep 17:827–831PubMedCrossRefGoogle Scholar
  19. Hellens RP, Mullineaux P, Klee H (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium mediated plant transformation. Plant Mol Biol 42:819–832PubMedCrossRefGoogle Scholar
  20. Himber C, Dunoyer P, Moissiard Izenthaler C, Voinnet O (2003) Transitivity dependent and independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Tiplasmid. Nature 303:179–180CrossRefGoogle Scholar
  22. Hu Q, Niu Y, Zhang K, Liu Y, Zhou X (2011) Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus. Virol J 8:41PubMedPubMedCentralCrossRefGoogle Scholar
  23. Jan FJ, Fagoaga C, Pang SZ, Gonsalves D (2000) A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology dependent gene silencing. J Gen Virol 81:2103–2109PubMedCrossRefGoogle Scholar
  24. Jardak-Jamoussi R, Winterhagen P, Bouamama B, Dubois C, MLiki A, Wetzel T, Ghorbel A, Reustle GM (2009) Development and evaluation of a GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell Tiss Org Cult 97:187–196CrossRefGoogle Scholar
  25. Jefferson RA, Wilson KJ (1991) The GUS gene fusion system. Plant Mol Biol Rep 5:387–405CrossRefGoogle Scholar
  26. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedPubMedCentralCrossRefGoogle Scholar
  27. Jiby MV, Bhat AI (2011) An efficient Agrobacterium-mediated transformation protocol for black Pepper (Piper nigrum L.) using embryogenic mass as explants. J Crop Sci Biotech 14:247–254CrossRefGoogle Scholar
  28. Jones HD, Diherty A, Wu H (2005) Review of methodology and a protocol for the Agrobacterium mediated transformation of wheat. Plant Methods 1:5PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kapaun JA, Cheng ZM (1994) Aminoglycoside antibiotics inhibit shoot regeneration from Siberian elm leaf explants. Hortsciences 34:727–729CrossRefGoogle Scholar
  30. Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Conkling MA, Thompson WF, Robertson D (1998) Gene silencing from plant DNA carried by a geminivirus. Plant J 14:91–100PubMedCrossRefGoogle Scholar
  31. Komari T, Imayama T, Kato N, Ishida Y, Ueki J, Komari T (2007) Current status of binary vectors and super binary vectors. Plant Physiol 145:1155–1160PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48PubMedCrossRefGoogle Scholar
  33. Kung Y, Yu T, Huang C, Wang H, Wang S, Yeh S (2010) Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res 19:621–635PubMedCrossRefGoogle Scholar
  34. Li ZN, Fang F, Liu GF, Bao MZ (2007) Stable Agrobacterium-mediated genetic transformation of London plane tree (Platanus acerifolia Willd.). Plant Cell Rep 26:641–650PubMedCrossRefGoogle Scholar
  35. Librado P, Rozas J (2009) v5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  36. Lozsa R, Csorba T, Lakatos L, Burgyan J (2008) Inhibition of 3 modification of small RNAs in virus infected plants require spatial and temporal coexpression of small RNAs and viral silencing-suppressor proteins. Nucleic Acids Res 36:4099–4107PubMedPubMedCentralCrossRefGoogle Scholar
  37. Manamohan M, Sharath Chandra G, Asokan R, Deepa H, Prakash MN, Krishna Kumar NK (2013) One-step DNA fragment assembly for expressing intron-containing hairpin RNA in plants for gene silencing. Anal Biochem 433:189–191PubMedCrossRefGoogle Scholar
  38. Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GO, Xu ZP (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207PubMedCrossRefGoogle Scholar
  39. Mondal TK, Bhattacharya A, Ahuja PS, Chand PK (2001) Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium mediated transformation of somatic embryos. Plant Cell Rep 20:712–720CrossRefGoogle Scholar
  40. Nair RR, Gupta SD (2006) High frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.). Plant Cell Rep 24:699–707PubMedCrossRefGoogle Scholar
  41. Naito Y, Yamada T, Matsumiya T, Ui-Tei K, Saigo K et al (2005) dsCheck: highly sensitive off–target search software for dsRNA–mediated RNA interference. Nucleic Acids Res 33:589–591CrossRefGoogle Scholar
  42. Ntui VO, Kynet K, Khan RS, Ohara M, Goto Y, Watanabe M, Fukami M, Nakamura I, Mil M (2014) Transgenic tobacco lines expressing defective CMV replicase-derived dsRNA are resistant to CMV-O and CMV-Y. Mol Biotechnol 56:50–63PubMedCrossRefGoogle Scholar
  43. O’Donell IJ, Shukla DD, Gough KH (1982) Electroblot immunoassay of virus infected plant sap—a powerful technique for detecting plant viruses. J Virol Methods 4:19–26CrossRefGoogle Scholar
  44. Oz MT, Eyidogan F, Yucel M, Oktem HA (2009) Optimized selection and regeneration conditions for Agrobacterium mediated transformation of chickpea cotyledonary nodes. Pak J Bot 41(4):2043–2054Google Scholar
  45. Pooggin MM (2017) RNAi-mediated resistance to viruses: a critical assessment of methodologies. Curr Opin Virol 26:28–35PubMedCrossRefGoogle Scholar
  46. Powel-Abel P, Nelson RS, De B, Hoffman N, Rogers SG, Frayley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco virus coat protein gene. Science 232:738–743CrossRefGoogle Scholar
  47. Praveen S, Kushwaha CM, Mishra AK, Singh V, Jain RK, Varma A (2005) Engineering tomato for resistance to tomato leaf curl disease using viral rep gene sequences. Plant Cell Tiss Org Cult 83:311–318CrossRefGoogle Scholar
  48. Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699PubMedPubMedCentralCrossRefGoogle Scholar
  49. Quemada H, L’Hostis B, Gonsalves D et al (1990) The nucleotide sequences of the 3′-terminal regions of papaya ringspot virus strains W and P. J Gen Virol 71:203–210PubMedCrossRefGoogle Scholar
  50. Retheesh ST, Bhat AI (2011) Genetic transformation and regeneration of transgenic plants from protocorm-like bodies of vanilla (Vanilla planifolia Andrews.) using Agrobacterium tumefaciens. J Plant Biochem Biotechnol 20:262–269CrossRefGoogle Scholar
  51. Revathy KA, Bhat AI (2019) Designing of siRNAs for various target genes of Cucumber mosaic virus subgroup IB. Indian J Biotechnol 18:119–125Google Scholar
  52. Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 9:1509–1519CrossRefGoogle Scholar
  53. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, vol I–III, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  54. Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance genes from the parasite’s own genome. J Theor Biol 113:395–405CrossRefGoogle Scholar
  55. Scorza R, Hily JM, Callahan A, Malinwski T, Cambra M, Capote M, Zagrai I, Damsteegt V, Briard P, Ravelonandro M (2007) Deregulation of plum pox resistant transgenic plum ‘HoneySweet’. Acta Hort 738:669–673CrossRefGoogle Scholar
  56. Shekhawat UKS, Ganapathi TR, Srinivas L, Bapat VA, Rathore TS (2008) Agrobacterium mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. Plant Cell Tiss Org Cult 92:261–271CrossRefGoogle Scholar
  57. Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309CrossRefGoogle Scholar
  58. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intorn-spliced hairpin RNAs. Nature 407:319–320PubMedCrossRefGoogle Scholar
  59. Smyth DR (1999) Gene silencing: plants and viruses fight it out. Curr Biol 9:100–102CrossRefGoogle Scholar
  60. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517PubMedCrossRefGoogle Scholar
  61. Tripathi S, Suzuki J, Gonsalves D (2007) Development of genetically engineered resistant papaya for Papaya ringspot virus in a timely manner: a comprehensive and successful approach. Methods Mol Biol 354:197–240PubMedGoogle Scholar
  62. Vanderschuren H, Stupak M, Futterer J, Gruissem W, Zhang P (2007) Engineering resistance to geminiviruses-review and perspectives. Plant Biotechnol J 5:207–220PubMedCrossRefGoogle Scholar
  63. Varma A, Jain RK, Bhat AI (2002) Virus resistant transgenic plants for environmentally safe management of viral diseases. Indian J Biotechnol 1:73–86Google Scholar
  64. Vassilakos N, Bem F, Tzima A, Barker H, Reavy B, Karanastasi E, Robinson DJ (2008) Resistance of transgenic tobacco plants incorporating the putative 57-kDa polymerase readthrough gene of Tobacco rattle virus against rub-inoculated and nematode-transmitted virus. Transgenic Res 17:929–941PubMedCrossRefGoogle Scholar
  65. Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987PubMedCrossRefGoogle Scholar
  66. Wen-Jun S, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acid Res 17:8385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Alangar Ishwara Bhat
    • 1
  • Govind Pratap Rao
    • 2
  1. 1.Division of Crop ProtectionICAR-Indian Institute of Spices ResearchKozhikodeIndia
  2. 2.Division of Plant PathologyICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations