Advertisement

High-Throughput MHC I Ligand Prediction Using MHCflurry

  • Timothy O’DonnellEmail author
  • Alex Rubinsteyn
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2120)

Abstract

MHCflurry is an open source package for peptide/MHC I binding affinity prediction. Its command-line and programmatic interfaces make it well-suited for integration into high-throughput bioinformatic pipelines. Users can download models fit to publicly available data or train predictors on their own affinity measurements or mass spec datasets. This chapter gives a tutorial on essential MHCflurry functionality, including generating predictions, training new models, and using the MHCflurry Python interface. MHCflurry is available at https://github.com/openvax/mhcflurry.

Key words

Epitope prediction MHC HLA Neoantigen Immunoinformatics 

References

  1. 1.
    O’Donnell TJ, Rubinsteyn A, Bonsack M et al (2018) MHCflurry: open-source class I MHC binding affinity prediction. Cell Syst 7:129–132.e4CrossRefGoogle Scholar
  2. 2.
    Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199:3360–3368CrossRefGoogle Scholar
  3. 3.
    Chollet F, Others (2015), Keras. https://github.com/keras-team/keras
  4. 4.
    Abadi M, Agarwal A, Barham P, et al (2016) TensorFlow: large-scale machine learning on heterogeneous distributed systems. http://arxiv.org/abs/1603.04467
  5. 5.
    Al-Rfou R, Alain G, Almahairi A, et al (2016) Theano: a Python framework for fast computation of mathematical expressionsGoogle Scholar
  6. 6.
    Marsh SGE, Albert ED, Bodmer WF et al (2010) Nomenclature for factors of the HLA system, 2010. Tissue Antigens 75:291–455CrossRefGoogle Scholar
  7. 7.
    Creech AL, Ting YS, Goulding SP et al (2018) The role of mass spectrometry and proteogenomics in the advancement of HLA epitope prediction. Proteomics 1700259:1–10Google Scholar
  8. 8.
    Vita R, Mahajan S, Overton JA et al (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343CrossRefGoogle Scholar
  9. 9.
    Kim Y, Sidney J, Buus S et al (2014) Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions. BMC Bioinformatics 15:241CrossRefGoogle Scholar
  10. 10.
    Shao W, Pedrioli PGA, Wolski W et al (2018) The SysteMHC atlas project. Nucleic Acids Res 46:D1237–D1247CrossRefGoogle Scholar
  11. 11.
    Abelin JG, Keskin DB, Sarkizova S et al (2017) Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46:315–326CrossRefGoogle Scholar
  12. 12.
    Sette A, Vitiello A, Reherman B et al (1994) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 153:5586–5592PubMedGoogle Scholar
  13. 13.
    Paul S, Weiskopf D, Angelo MA et al (2013) HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J Immunol 191:5831–5839CrossRefGoogle Scholar
  14. 14.
    Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shiftGoogle Scholar
  15. 15.
    Srivastava N, Hinton GE, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations