In Silico Cell-Type Deconvolution Methods in Cancer Immunotherapy

  • Gregor Sturm
  • Francesca Finotello
  • Markus ListEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2120)


Several computational methods have been proposed to infer the cellular composition from bulk RNA-seq data of a tumor biopsy sample. Elucidating interactions in the tumor microenvironment can yield unique insights into the status of the immune system. In immuno-oncology, this information can be crucial for deciding whether the immune system of a patient can be stimulated to target the tumor. Here, we shed a light on the working principles, capabilities, and limitations of the most commonly used methods for cell-type deconvolution in immuno-oncology and offer guidelines for method selection.

Key words

Cell-type deconvolution Immuno-oncology Spillover Gene signatures 


  1. 1.
    Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. Scholar
  2. 2.
    Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14:717–734. Scholar
  3. 3.
    Friedman AA, Letai A, Fisher DE, Flaherty KT (2015) Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 15:747–756. Scholar
  4. 4.
    Petitprez F, Sun CM, Lacroix L (2018) Quantitative analyses of the tumor microenvironment composition and orientation in the era of precision medicine. Front Oncol 8:390. Scholar
  5. 5.
    Lambrechts D, Wauters E, Boeckx B et al (2018) Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24:1277–1289. Scholar
  6. 6.
    Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120. Scholar
  7. 7.
    Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453. Scholar
  8. 8.
    Finotello F, Mayer C, Plattner C et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11:34CrossRefGoogle Scholar
  9. 9.
    Racle J, de Jonge K, Baumgaertner P et al (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. elife 6:e26476. Scholar
  10. 10.
    Li B, Severson E, Pignon J-C et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:174. Scholar
  11. 11.
    Petitprez F, Vano YA, Becht E et al (2018) Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies. Cancer Immunol Immunother 67:981–988. Scholar
  12. 12.
    Finotello F, Trajanoski Z (2018) Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother 67:1031–1040. Scholar
  13. 13.
    Avila Cobos F, Vandesompele J, Mestdagh P, De Preter K (2018) Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics 34:1969–1979. Scholar
  14. 14.
    Newman AM, Alizadeh AA (2016) High-throughput genomic profiling of tumor-infiltrating leukocytes. Curr Opin Immunol 41:77–84. Scholar
  15. 15.
    Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. Scholar
  16. 16.
    Becht E, Giraldo NA, Lacroix L et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218. Scholar
  17. 17.
    Forrest ARR, Kawaji H, Rehli M et al (2014) A promoter-level mammalian expression atlas. Nature 507:462–470. Scholar
  18. 18.
    ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. Scholar
  19. 19.
    Fernández JM, de la Torre V, Richardson D et al (2016) The BLUEPRINT data analysis portal. Cell Syst 3:491–495.e5. Scholar
  20. 20.
    Abbas AR, Baldwin D, Ma Y et al (2005) Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun 6:319–331. Scholar
  21. 21.
    Mabbott NA, Baillie JK, Brown H et al (2013) An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14:632. Scholar
  22. 22.
    Novershtern N, Subramanian A, Lawton LN et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:296–309. Scholar
  23. 23.
    Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA CIBERSORT website. In: CIBERSORT. Accessed 20 Oct 2018
  24. 24.
    Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127. Scholar
  25. 25.
    Sturm et al (2019) Comprehensive evaluation of computational cell-type quantification methods for immuno-oncology. Bioinformatics 35(14):i436–i445. Scholar
  26. 26.
    Collin M, McGovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140:22–30. Scholar
  27. 27.
    Villani A-C, Satija R, Reynolds G et al (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356. Scholar
  28. 28.
    Sade-Feldman M, Yizhak K, Bjorgaard SL et al (2019) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 176:404. Scholar
  29. 29.
    Azizi E, Carr AJ, Plitas G, et al Single-cell immune map of breast carcinoma reveals diverse phenotypic states driven by the tumor microenvironment.
  30. 30.
    Guo X, Zhang Y, Zheng L et al (2018) Global characterization of T cells in non-small cell lung cancer by single-cell sequencing. Nat Med 24:978–985. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Gregor Sturm
    • 1
  • Francesca Finotello
    • 1
  • Markus List
    • 2
    Email author
  1. 1.Biocenter, Institute of BioinformaticsMedical University of InnsbruckInnsbruckAustria
  2. 2.Big Data in BioMedicine Group, TUM School of Life SciencesTechnical University of MunichFreisingGermany

Personalised recommendations