Advertisement

Assessment of Toxicity of Nanoparticles Using Insects as Biological Models

  • Yan Zhou
  • Yan Chen
  • Aracely Rocha
  • Carlos J. Sanchez
  • Hong LiangEmail author
Protocol
  • 139 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2118)

Abstract

Nanomaterials have become increasingly important in medicine, manufacturing, and consumer products. A fundamental understanding of the effects of nanoparticles (NPs) and their interactions with biomolecules and organismal systems has yet to be achieved. In this chapter, we firstly provide a brief review of the interactions between nanoparticles and biological systems. We then provide an example by describing a novel method to assess the effects of NPs on biological systems, using insects as a model. Nanoparticles were injected into the central nervous system of the discoid cockroach (Blaberus discoidalis). It was found that insects became hyperactive compared to negative control (water injections). Our method could provide a generic method of assessing nanoparticles toxicity.

Key words

Nanomaterials Toxicity Insects Nervous system Magnetic nanoparticles Cockroach walking distance 

Notes

Acknowledgments

The manuscript was edited by Mikhail Soloviev. This work was partially sponsored by the National Science Foundation (0515930), Texas Engineering Experimental Station, and the Texas A&M University. Assistance provided by Drs. Brad Vinson, Jorge Gonzelez, and Subrata Kundu is greatly appreciated.

References

  1. 1.
    Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93:2693–2730CrossRefGoogle Scholar
  2. 2.
    Alivisatos AP (1996) Semiconductor clusters, Nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  3. 3.
    Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873CrossRefGoogle Scholar
  4. 4.
    Taton T, Mirkin C, Letsinger R (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757CrossRefGoogle Scholar
  5. 5.
    Cao Y, Jin R, Mirkin C (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536CrossRefGoogle Scholar
  6. 6.
    Sandhu K, McIntosh C, Simard J, Smith S, Rotello V (2002) Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem 13:3–6CrossRefGoogle Scholar
  7. 7.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  8. 8.
    Loh XJ, Lee T-C, Dou Q, Deen GR (2016) Utilising inorganic nanocarriers for gene delivery. Biomater Sci 4:70–86CrossRefGoogle Scholar
  9. 9.
    Alkahtani M, Chen Y, Pedraza JJ, González JM, Parkinson DY, Hemmer PR, Liang H (2017) High resolution fluorescence bio-imaging upconversion nanoparticles in insects. Opt Express 25:1030–1039CrossRefGoogle Scholar
  10. 10.
    Chen Y, Sanchez C, Yue Y, González JM, Parkinson DY, Liang H (2016) Observation of two-dimensional yttrium oxide nanoparticles in mealworm beetles (Tenebrio molitor). J Synchrotron Radiat 23:1197–1201CrossRefGoogle Scholar
  11. 11.
    Chen Y, Sanchez C, Yue Y, de Almeida M, González JM, Parkinson DY, Liang H (2016) Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual energy K-edge subtraction imaging. J Nanobiotechnol 14:23CrossRefGoogle Scholar
  12. 12.
    Rocha A, Zhou Y, Kundu S, González JM, BradleighVinson S, Liang H (2011) In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis. J Nanobiotechnol 9:5CrossRefGoogle Scholar
  13. 13.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711CrossRefGoogle Scholar
  14. 14.
    Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185CrossRefGoogle Scholar
  15. 15.
    Ashcroft JM, Tsyboulski DA, Hartman KB, Zakharian TY, Marks JW, Weisman RB, Rosenblum MG, Wilson LJ (2006) Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun 28:3004–3006CrossRefGoogle Scholar
  16. 16.
    Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679CrossRefGoogle Scholar
  17. 17.
    Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906CrossRefGoogle Scholar
  18. 18.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310CrossRefGoogle Scholar
  19. 19.
    Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79CrossRefGoogle Scholar
  20. 20.
    Bhavane R, Karathanasis E, Annapragada AV (2007) Triggered release of ciprofloxacin from nanostructured agglomerated vesicles. Int J Nanomedicine 2:407CrossRefGoogle Scholar
  21. 21.
    Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR (2010) Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol 17:318–324CrossRefGoogle Scholar
  22. 22.
    Du Y, Guo S (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8:2532–2543CrossRefGoogle Scholar
  23. 23.
    Xu S, Li D, Wu P (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25:1127–1136CrossRefGoogle Scholar
  24. 24.
    Zebibula A, Alifu N, Xia L, Sun C, Yu X, Xue D, Liu L, Li G, Qian J (2018) Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging. Adv Funct Mater 28:1703451CrossRefGoogle Scholar
  25. 25.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  26. 26.
    Ereath Beeran A, Fernandez FB, Varma PH (2018) Self-controlled hyperthermia & MRI contrast enhancement via iron oxide embedded hydroxyapatite superparamagnetic particles for theranostic application. ACS Biomater Sci Eng 5:106–113CrossRefGoogle Scholar
  27. 27.
    Chiu C-W, Sanchez C, Zhou Y, González JM, Harlow M, Vinson SB, Liang H (2012) In vivo neural stimulation for locomotion control of cockroaches. Trends Entomol 8:66–73Google Scholar
  28. 28.
    Kirschvink J, Padmanabha S, Boyce C, Oglesby J (1997) Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J Exp Biol 200:1363PubMedGoogle Scholar
  29. 29.
    Kirschvink JL, Kirschvink AK (1991) Is geomagnetic sensitivity real? Replication of the Walker-Bitterman magnetic conditioning experiment in honey bees. Am Zool 31:169CrossRefGoogle Scholar
  30. 30.
    Walker MM, Bitterman M (1989) Short communication honeybees can be trained to respond to very small changes in geomagnetic field intensity. J Exp Biol 145:489Google Scholar
  31. 31.
    Phillips J, Sayeed O (1993) Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 172:303–308CrossRefGoogle Scholar
  32. 32.
    Vácha M (2006) Laboratory behavioural assay of insect magnetoreception: magnetosensitivity of Periplaneta americana. J Exp Biol 209:3882CrossRefGoogle Scholar
  33. 33.
    Vácha M, Puzová T, Kvícalová M (2009) Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212:3473CrossRefGoogle Scholar
  34. 34.
    Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel D (2010) Magnetoreception in eusocial insects: an update. J R Soc Interface 7:S207CrossRefGoogle Scholar
  35. 35.
    Abraçado L, Esquivel D, Wajnberg E (2008) Oriented magnetic material in head and antennae of Solenopsis interrupta ant. J Magn Magn Mater 320:e204–e206CrossRefGoogle Scholar
  36. 36.
    De Oliveira JF, Wajnberg E, de Souza Esquivel DM, Weinkauf S, Winklhofer M, Hanzlik M (2010) Ant antennae: are they sites for magnetoreception? J R Soc Interface 7:143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yan Zhou
    • 1
  • Yan Chen
    • 1
  • Aracely Rocha
    • 1
  • Carlos J. Sanchez
    • 1
  • Hong Liang
    • 1
    Email author
  1. 1.Materials Science and Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations