Gene Editing in B-Lymphoma Cell Lines Using CRISPR/Cas9 Technology

  • Baoyan BaiEmail author
  • June Helen Myklebust
  • Sébastien Wälchli
Part of the Methods in Molecular Biology book series (MIMB, volume 2115)


Genome editing in eukaryotes has greatly improved through the application of targeted editing tools. The development of the CRISPR/Cas9 technology has facilitated genome editing in mammalian cells. However, efficient delivery of CRISPR components into cells growing in suspension remains a challenge. Here, we present a strategy for sequential delivery of the two essential components, Cas9 and sgRNA, into B-lymphoid cell lines. Stable Cas9 expression is obtained by retroviral transduction, before sgRNA is transiently delivered into the Cas9+ cells. This method improves the on-target efficiency of genome editing and, through the transient presence of sgRNA, reduces the potential off-target sites. The current method can be easily applied to other cell types that are difficult to edit with CRISPR/Cas9.

Key words

B-lymphoma cells CRISPR/Cas9 Genome editing Cas9-expressing cells Square wave electroporation 


  1. 1.
    Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109(43):17382–17387CrossRefGoogle Scholar
  2. 2.
    Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433CrossRefGoogle Scholar
  3. 3.
    Takasu Y, Kobayashi I, Beumer K, Uchino K, Sezutsu H, Sajwan S, Carroll D, Tamura T, Zurovec M (2010) Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem Mol Biol 40(10):759–765CrossRefGoogle Scholar
  4. 4.
    Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23(4):465–472CrossRefGoogle Scholar
  5. 5.
    Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31(3):230–232. Scholar
  6. 6.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826CrossRefGoogle Scholar
  7. 7.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832CrossRefGoogle Scholar
  8. 8.
    Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019CrossRefGoogle Scholar
  9. 9.
    Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD (2015) Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208:44–53CrossRefGoogle Scholar
  10. 10.
    Huse K, Bakkebø M, Wälchli S, Oksvold MP, Hilden VI, Forfang L, Bredahl ML, Liestøl K, Alizadeh AA, Smeland EB, Myklebust JH (2012) Role of Smad proteins in resistance to BMP-induced growth inhibition in B-cell lymphoma. PLoS One 7(10):e46117CrossRefGoogle Scholar
  11. 11.
    Bollum LK, Huse K, Oksvold MP, Bai B, Hilden VI, Forfang L, Yoon SO, Wälchli S, Smeland EB, Myklebust JH (2017) BMP-7 induces apoptosis in human germinal center B cells and is influenced by TGF-beta receptor type I ALK5. PLoS One 12(5):e0177188CrossRefGoogle Scholar
  12. 12.
    Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11(4):399–402CrossRefGoogle Scholar
  13. 13.
    Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276CrossRefGoogle Scholar
  14. 14.
    Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42(Web Server issue):W401–W407CrossRefGoogle Scholar
  15. 15.
    Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475CrossRefGoogle Scholar
  16. 16.
    Wälchli S, Løset GÅ, Kumari S, Johansen JN, Yang W, Sandlie I, Olweus J (2011) A practical approach to T-cell receptor cloning and expression. PLoS One 6(11):e27930CrossRefGoogle Scholar
  17. 17.
    Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168CrossRefGoogle Scholar
  18. 18.
    Dehairs J, Talebi A, Cherifi Y, Swinnen JV (2016) CRISP-ID: decoding CRISPR mediated indels by sanger sequencing. Sci Rep 6:28973CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Baoyan Bai
    • 1
    • 2
    Email author
  • June Helen Myklebust
    • 1
    • 2
  • Sébastien Wälchli
    • 3
  1. 1.Department of Cancer Immunology, Institute for Cancer ResearchOslo University HospitalOsloNorway
  2. 2.KG. Jebsen Centre for B cell MalignanciesUniversity of OsloOsloNorway
  3. 3.Department of Cellular Therapy, Division of Cancer MedicineOslo University HospitalOsloNorway

Personalised recommendations