Skip to main content

CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2115))

Abstract

A critical stage in performing gene editing experiments using the CRISPR/Cas9 system is the design of guide RNA (gRNA). In this chapter, we conduct a review of the current gRNA design rules for maximizing on-target Cas9 activity while minimizing off-target activity. In addition, we present some of the currently available computational tools for gRNA activity prediction and assay design.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  3. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, Wu D, Cong L, Zhang F, Liu JS, Brown M, Liu XS (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25(8):1147–1157. https://doi.org/10.1101/gr.191452.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16:218. https://doi.org/10.1186/s13059-015-0784-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84. https://doi.org/10.1126/science.1246981

    Article  CAS  PubMed  Google Scholar 

  8. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12(10):982–988. https://doi.org/10.1038/nmeth.3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D (2018) Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res 46(3):1375–1385. https://doi.org/10.1093/nar/gkx1268

    Article  CAS  PubMed  Google Scholar 

  10. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267. https://doi.org/10.1038/nbt.3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191. https://doi.org/10.1038/nbt.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chuai G, Ma H, Yan J, Chen M, Hong N, Xue D, Zhou C, Zhu C, Chen K, Duan B, Gu F, Qu S, Huang D, Wei J, Liu Q (2018) DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol 19(1):80. https://doi.org/10.1186/s13059-018-1459-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chari R, Mali P, Moosburner M, Church GM (2015) Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12(9):823–826. https://doi.org/10.1038/nmeth.3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Listgarten J, Weinstein M, Kleinstiver BP, Sousa AA, Joung JK, Crawford J, Gao K, Hoang L, Elibol M, Doench JG, Fusi N (2018) Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat Biomed Eng 2(1):38–47. https://doi.org/10.1038/s41551-017-0178-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67. https://doi.org/10.1038/nature13011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569–573. https://doi.org/10.1038/nature13579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334(6180):364–366. https://doi.org/10.1038/334364a0

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen S, Yuzenkova Y, Zenkin N (2013) Mechanism of eukaryotic RNA polymerase III transcription termination. Science 340(6140):1577–1580. https://doi.org/10.1126/science.1237934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Graf R, Li X, Chu VT, Rajewsky K (2019) sgRNA sequence motifs blocking efficient CRISPR/Cas9-mediated gene editing. Cell Rep 26(5):e1093–e1103. https://doi.org/10.1016/j.celrep.2019.01.024

    Article  CAS  Google Scholar 

  21. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32(7):670–676. https://doi.org/10.1038/nbt.2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng H, Zheng Y, Blumenstein M, Tao D, Li J (2018) CRISPR/Cas9 cleavage efficiency regression through boosting algorithms and Markov sequence profiling. Bioinformatics 34(18):3069–3077. https://doi.org/10.1093/bioinformatics/bty298

    Article  CAS  PubMed  Google Scholar 

  23. Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9(3):1151–1162. https://doi.org/10.1016/j.celrep.2014.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529. https://doi.org/10.1146/annurev-biophys-062215-010822

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Dai Z, Liang Y, Yin M, Ma K, He M, Ouyang H, Teng CB (2014) Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci Rep 4:3943. https://doi.org/10.1038/srep03943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang Q, Meng X, Meng L, Chang N, Xiong J, Cao H, Liang Z (2014) Small indels induced by CRISPR/Cas9 in the 5′ region of microRNA lead to its depletion and Drosha processing retardance. RNA Biol 11(10):1243–1249. https://doi.org/10.1080/15476286.2014.996067

    Article  PubMed  Google Scholar 

  27. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M, Liu Z, Doudna JA, Tjian R (2015) Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350 (6262):823–826. https://doi.org/10.1126/science.aac6572

    Article  CAS  PubMed  Google Scholar 

  28. Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, Torigoe SE, Tjian R, Weissman JS (2016) Nucleosomes impede Cas9 access to DNA in vivo and in vitro. elife 5. https://doi.org/10.7554/eLife.12677

  29. Hartenian E, Doench JG (2015) Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS J 282(8):1383–1393. https://doi.org/10.1111/febs.13248

    Article  CAS  PubMed  Google Scholar 

  30. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1):148. https://doi.org/10.1186/s13059-016-1012-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hiranniramol, K., Chen, Y., Wang, X. (2020). CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity. In: Sioud, M. (eds) RNA Interference and CRISPR Technologies. Methods in Molecular Biology, vol 2115. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0290-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0290-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0289-8

  • Online ISBN: 978-1-0716-0290-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics