Kuhns MS, Davis MM, Garcia KC (2006) Deconstructing the form and function of the TCR/CD3 complex. Immunity 24(2):133–139. https://doi.org/10.1016/j.immuni.2006.01.006
CAS
CrossRef
PubMed
Google Scholar
Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME (2010) Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol 2(4):a005140. https://doi.org/10.1101/cshperspect.a005140
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kane LP, Lin J, Weiss A (2000) Signal transduction by the TCR for antigen. Curr Opin Immunol 12(3):242–249
CAS
CrossRef
PubMed
Google Scholar
Artyomov MN, Lis M, Devadas S, Davis MM, Chakraborty AK (2010) CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc Natl Acad Sci U S A 107(39):16916–16921. https://doi.org/10.1073/pnas.1010568107
CrossRef
PubMed
PubMed Central
Google Scholar
Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (2016) CD28 costimulation: from mechanism to therapy. Immunity 44(5):973–988. https://doi.org/10.1016/j.immuni.2016.04.020
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752. https://doi.org/10.1038/nm.3161
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74. https://doi.org/10.1126/science.aaa4971
CAS
CrossRef
PubMed
Google Scholar
Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, Rosenberg SA (2017) Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res 23(10):2491–2505. https://doi.org/10.1158/1078-0432.CCR-16-2680
CAS
CrossRef
PubMed
Google Scholar
Muenst S, Laubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S (2016) The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med 279(6):541–562. https://doi.org/10.1111/joim.12470
CAS
CrossRef
PubMed
Google Scholar
Fridman WH (2018) From cancer immune surveillance to cancer immunoediting: birth of modern immuno-oncology. J Immunol 201(3):825–826. https://doi.org/10.4049/jimmunol.1800827
CAS
CrossRef
PubMed
Google Scholar
Ribatti D (2017) The concept of immune surveillance against tumors. The first theories. Oncotarget 8(4):7175–7180. https://doi.org/10.18632/oncotarget.12739
CrossRef
PubMed
Google Scholar
Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol 27:16–25. https://doi.org/10.1016/j.coi.2014.01.004
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111. https://doi.org/10.1038/35074122
CAS
CrossRef
PubMed
Google Scholar
Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319(25):1676–1680. https://doi.org/10.1056/NEJM198812223192527
CAS
CrossRef
PubMed
Google Scholar
Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281. https://doi.org/10.1038/nri3191
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594):850–854. https://doi.org/10.1126/science.1076514
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Yee C, Savage PA, Lee PP, Davis MM, Greenberg PD (1999) Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J Immunol 162(4):2227–2234
CAS
PubMed
Google Scholar
Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332–342
CrossRef
PubMed
PubMed Central
Google Scholar
Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308. https://doi.org/10.1038/nrc2355
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT (2002) Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 188:22–32
CAS
CrossRef
PubMed
Google Scholar
Theobald M, Biggs J, Hernandez J, Lustgarten J, Labadie C, Sherman LA (1997) Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J Exp Med 185(5):833–841. https://doi.org/10.1084/jem.185.5.833
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kuball J, Schuler M, Antunes Ferreira E, Herr W, Neumann M, Obenauer-Kutner L, Westreich L, Huber C, Wolfel T, Theobald M (2002) Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Gene Ther 9(13):833–843. https://doi.org/10.1038/sj.gt.3301709
CAS
CrossRef
PubMed
Google Scholar
Dembic Z, Haas W, Weiss S, McCubrey J, Kiefer H, von Boehmer H, Steinmetz M (1986) Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature 320(6059):232–238
CAS
CrossRef
PubMed
Google Scholar
Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129. https://doi.org/10.1126/science.1129003
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Schumacher TN (2002) T-cell-receptor gene therapy. Nat Rev Immunol 2(7):512–519. https://doi.org/10.1038/nri841
CAS
CrossRef
PubMed
Google Scholar
Eshhar Z, Waks T, Bendavid A, Schindler DG (2001) Functional expression of chimeric receptor genes in human T cells. J Immunol Methods 248(1–2):67–76
CAS
CrossRef
PubMed
Google Scholar
Barrett DM, Grupp SA, June CH (2015) Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street. J Immunol 195(3):755–761. https://doi.org/10.4049/jimmunol.1500751
CAS
CrossRef
PubMed
Google Scholar
van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R, van Rood JJ, Falkenburg JH, Heemskerk MH (2010) Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci U S A 107(24):10972–10977. https://doi.org/10.1073/pnas.1005802107
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A, Kaiser AD, Pouw N, Debets R, Kieback E, Uckert W, Song JY, Haanen JB, Schumacher TN (2010) Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 16(5):565–570. https://doi.org/10.1038/nm.2128. 561 p. Following 570
CAS
CrossRef
PubMed
Google Scholar
Cohen CJ, Zheng Z, Bray R, Zhao Y, Sherman LA, Rosenberg SA, Morgan RA (2005) Recognition of fresh human tumor by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. J Immunol 175(9):5799–5808
CAS
CrossRef
PubMed
Google Scholar
Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA (2006) Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 66(17):8878–8886. https://doi.org/10.1158/0008-5472.CAN-06-1450
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Voss RH, Kuball J, Engel R, Guillaume P, Romero P, Huber C, Theobald M (2006) Redirection of T cells by delivering a transgenic mouse-derived MDM2 tumor antigen-specific TCR and its humanized derivative is governed by the CD8 coreceptor and affects natural human TCR expression. Immunol Res 34(1):67–87. https://doi.org/10.1385/IR:34:1:67
CAS
CrossRef
PubMed
Google Scholar
Sommermeyer D, Uckert W (2010) Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J Immunol 184(11):6223–6231. https://doi.org/10.4049/jimmunol.0902055
CAS
CrossRef
PubMed
Google Scholar
Boulter JM, Glick M, Todorov PT, Baston E, Sami M, Rizkallah P, Jakobsen BK (2003) Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng 16(9):707–711
CAS
CrossRef
PubMed
Google Scholar
Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C, Greenberg PD (2007) Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109(6):2331–2338. https://doi.org/10.1182/blood-2006-05-023069
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Voss RH, Willemsen RA, Kuball J, Grabowski M, Engel R, Intan RS, Guillaume P, Romero P, Huber C, Theobald M (2008) Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. J Immunol 180(1):391–401
CAS
CrossRef
PubMed
Google Scholar
Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594. https://doi.org/10.1038/nbt957
CAS
CrossRef
PubMed
Google Scholar
Yang S, Cohen CJ, Peng PD, Zhao Y, Cassard L, Yu Z, Zheng Z, Jones S, Restifo NP, Rosenberg SA, Morgan RA (2008) Development of optimal bicistronic lentiviral vectors facilitates high-level TCR gene expression and robust tumor cell recognition. Gene Ther 15(21):1411–1423. https://doi.org/10.1038/gt.2008.90
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Scholten KB, Kramer D, Kueter EW, Graf M, Schoedl T, Meijer CJ, Schreurs MW, Hooijberg E (2006) Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 119(2):135–145. https://doi.org/10.1016/j.clim.2005.12.009
CAS
CrossRef
PubMed
Google Scholar
Willcox BE, Gao GF, Wyer JR, O’Callaghan CA, Boulter JM, Jones EY, van der Merwe PA, Bell JI, Jakobsen BK (1999) Production of soluble alphabeta T-cell receptor heterodimers suitable for biophysical analysis of ligand binding. Protein Sci 8(11):2418–2423. https://doi.org/10.1110/ps.8.11.2418
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Foley KC, Spear TT, Murray DC, Nagato K, Garrett-Mayer E, Nishimura MI (2017) HCV T cell receptor chain modifications to enhance expression, pairing, and antigen recognition in T cells for adoptive transfer. Mol Ther Oncolytics 5:105–115. https://doi.org/10.1016/j.omto.2017.05.004
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Bethune MT, Gee MH, Bunse M, Lee MS, Gschweng EH, Pagadala MS, Zhou J, Cheng D, Heath JR, Kohn DB, Kuhns MS, Uckert W, Baltimore D (2016) Domain-swapped T cell receptors improve the safety of TCR gene therapy. elife 5. https://doi.org/10.7554/eLife.19095
Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA (2007) Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 67(8):3898–3903. https://doi.org/10.1158/0008-5472.CAN-06-3986
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hart DP, Xue SA, Thomas S, Cesco-Gaspere M, Tranter A, Willcox B, Lee SP, Steven N, Morris EC, Stauss HJ (2008) Retroviral transfer of a dominant TCR prevents surface expression of a large proportion of the endogenous TCR repertoire in human T cells. Gene Ther 15(8):625–631. https://doi.org/10.1038/sj.gt.3303078
CAS
CrossRef
PubMed
Google Scholar
Reus K, Mayer J, Sauter M, Zischler H, Muller-Lantzsch N, Meese E (2001) HERV-K(OLD): ancestor sequences of the human endogenous retrovirus family HERV-K(HML-2). J Virol 75(19):8917–8926. https://doi.org/10.1128/JVI.75.19.8917-8926.2001
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Reuss S, Sebestyen Z, Heinz N, Loew R, Baum C, Debets R, Uckert W (2014) TCR-engineered T cells: a model of inducible TCR expression to dissect the interrelationship between two TCRs. Eur J Immunol 44(1):265–274. https://doi.org/10.1002/eji.201343591
CAS
CrossRef
PubMed
Google Scholar
Willemsen RA, Weijtens ME, Ronteltap C, Eshhar Z, Gratama JW, Chames P, Bolhuis RL (2000) Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther 7(16):1369–1377. https://doi.org/10.1038/sj.gt.3301253
CAS
CrossRef
PubMed
Google Scholar
Chung S, Wucherpfennig KW, Friedman SM, Hafler DA, Strominger JL (1994) Functional three-domain single-chain T-cell receptors. Proc Natl Acad Sci U S A 91(26):12654–12658
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Voss RH, Thomas S, Pfirschke C, Hauptrock B, Klobuch S, Kuball J, Grabowski M, Engel R, Guillaume P, Romero P, Huber C, Beckhove P, Theobald M (2010) Coexpression of the T-cell receptor constant alpha domain triggers tumor reactivity of single-chain TCR-transduced human T cells. Blood 115(25):5154–5163. https://doi.org/10.1182/blood-2009-11-254078
CAS
CrossRef
PubMed
Google Scholar
Knies D, Klobuch S, Xue SA, Birtel M, Echchannaoui H, Yildiz O, Omokoko T, Guillaume P, Romero P, Stauss H, Sahin U, Herr W, Theobald M, Thomas S, Voss RH (2016) An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget 7(16):21199–21221. https://doi.org/10.18632/oncotarget.8385
CrossRef
PubMed
PubMed Central
Google Scholar
Ahmadi M, King JW, Xue SA, Voisine C, Holler A, Wright GP, Waxman J, Morris E, Stauss HJ (2011) CD3 limits the efficacy of TCR gene therapy in vivo. Blood 118(13):3528–3537. https://doi.org/10.1182/blood-2011-04-346338
CAS
CrossRef
PubMed
Google Scholar
Govers C, Sebestyen Z, Roszik J, van Brakel M, Berrevoets C, Szoor A, Panoutsopoulou K, Broertjes M, Van T, Vereb G, Szollosi J, Debets R (2014) TCRs genetically linked to CD28 and CD3epsilon do not mispair with endogenous TCR chains and mediate enhanced T cell persistence and anti-melanoma activity. J Immunol 193(10):5315–5326. https://doi.org/10.4049/jimmunol.1302074
CAS
CrossRef
PubMed
Google Scholar
Walseng E, Koksal H, Sektioglu IM, Fane A, Skorstad G, Kvalheim G, Gaudernack G, Inderberg EM, Walchli S (2017) A TCR-based chimeric antigen receptor. Sci Rep 7(1):10713. https://doi.org/10.1038/s41598-017-11126-y
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Walseng E, Walchli S, Fallang LE, Yang W, Vefferstad A, Areffard A, Olweus J (2015) Soluble T-cell receptors produced in human cells for targeted delivery. PLoS One 10(4):e0119559. https://doi.org/10.1371/journal.pone.0119559
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Liddy N, Bossi G, Adams KJ, Lissina A, Mahon TM, Hassan NJ, Gavarret J, Bianchi FC, Pumphrey NJ, Ladell K, Gostick E, Sewell AK, Lissin NM, Harwood NE, Molloy PE, Li Y, Cameron BJ, Sami M, Baston EE, Todorov PT, Paston SJ, Dennis RE, Harper JV, Dunn SM, Ashfield R, Johnson A, McGrath Y, Plesa G, June CH, Kalos M, Price DA, Vuidepot A, Williams DD, Sutton DH, Jakobsen BK (2012) Monoclonal TCR-redirected tumor cell killing. Nat Med 18(6):980–987. https://doi.org/10.1038/nm.2764
CAS
CrossRef
PubMed
Google Scholar
Baeuerle PA, Kufer P, Bargou R (2009) BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 11(1):22–30
CAS
PubMed
Google Scholar
Oates J, Jakobsen BK (2013) ImmTACs: novel bi-specific agents for targeted cancer therapy. Oncoimmunology 2(2):e22891. https://doi.org/10.4161/onci.22891
CrossRef
PubMed
PubMed Central
Google Scholar
Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, Potrel P, Bas C, Lemaire L, Galetto R, Lebuhotel C, Eyquem J, Cheung GW, Duclert A, Gouble A, Arnould S, Peggs K, Pule M, Scharenberg AM, Smith J (2015) Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive t-cell immunotherapies. Cancer Res 75(18):3853–3864. https://doi.org/10.1158/0008-5472.CAN-14-3321
CAS
CrossRef
PubMed
Google Scholar
Osborn MJ, Webber BR, Knipping F, Lonetree CL, Tennis N, DeFeo AP, McElroy AN, Starker CG, Lee C, Merkel S, Lund TC, Kelly-Spratt KS, Jensen MC, Voytas DF, von Kalle C, Schmidt M, Gabriel R, Hippen KL, Miller JS, Scharenberg AM, Tolar J, Blazar BR (2016) Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol Ther 24(3):570–581. https://doi.org/10.1038/mt.2015.197
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mensali N, Dillard P, Hebeisen M, Lorenz S, Theodossiou T, Myhre MR, Fane A, Gaudernack G, Kvalheim G, Myklebust JH, Inderberg EM, Walchli S (2019) NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine 40:106–117. https://doi.org/10.1016/j.ebiom.2019.01.031
CrossRef
PubMed
PubMed Central
Google Scholar
Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK (2018) CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 131(3):311–322. https://doi.org/10.1182/blood-2017-05-787598
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Certo MT, Gwiazda KS, Kuhar R, Sather B, Curinga G, Mandt T, Brault M, Lambert AR, Baxter SK, Jacoby K, Ryu BY, Kiem HP, Gouble A, Paques F, Rawlings DJ, Scharenberg AM (2012) Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat Methods 9(10):973–975. https://doi.org/10.1038/nmeth.2177
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A, Chu V, Paschon DE, Zhang L, Kuball J, Camisa B, Bondanza A, Casorati G, Ponzoni M, Ciceri F, Bordignon C, Greenberg PD, Holmes MC, Gregory PD, Naldini L, Bonini C (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18(5):807–815. https://doi.org/10.1038/nm.2700
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Berdien B, Mock U, Atanackovic D, Fehse B (2014) TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther 21(6):539–548. https://doi.org/10.1038/gt.2014.26
CAS
CrossRef
PubMed
Google Scholar
Georgiadis C, Preece R, Nickolay L, Etuk A, Petrova A, Ladon D, Danyi A, Humphryes-Kirilov N, Ajetunmobi A, Kim D, Kim JS, Qasim W (2018) Long terminal repeat CRISPR-CAR-coupled “universal” T cells mediate potent anti-leukemic effects. Mol Ther 26(5):1215–1227. https://doi.org/10.1016/j.ymthe.2018.02.025
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, Hiatt J, Saco J, Krystofinski P, Li H, Tobin V, Nguyen DN, Lee MR, Putnam AL, Ferris AL, Chen JW, Schickel JN, Pellerin L, Carmody D, Alkorta-Aranburu G, Del Gaudio D, Matsumoto H, Morell M, Mao Y, Cho M, Quadros RM, Gurumurthy CB, Smith B, Haugwitz M, Hughes SH, Weissman JS, Schumann K, Esensten JH, May AP, Ashworth A, Kupfer GM, Greeley SAW, Bacchetta R, Meffre E, Roncarolo MG, Romberg N, Herold KC, Ribas A, Leonetti MD, Marson A (2018) Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559(7714):405–409. https://doi.org/10.1038/s41586-018-0326-5
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Albers JJ, Ammon T, Gosmann D, Audehm S, Thoene S, Winter C, Secci R, Wolf A, Stelzl A, Steiger K, Ruland J, Bassermann F, Kupatt C, Anton M, Krackhardt AM (2019) Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection. Life Sci Alliance 2(2). https://doi.org/10.26508/lsa.201900367
CrossRef
PubMed
PubMed Central
Google Scholar
Davis L, Maizels N (2014) Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A 111(10):E924–E932. https://doi.org/10.1073/pnas.1400236111
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495. https://doi.org/10.1038/nature16526
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature. https://doi.org/10.1038/nature24268
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. https://doi.org/10.1038/nbt.4192
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Rezza A, Jacquet C, Le Pillouer A, Lafarguette F, Ruptier C, Billandon M, Isnard Petit P, Trouttet S, Thiam K, Fraichard A, Cherifi Y (2019) Unexpected genomic rearrangements at targeted loci associated with CRISPR/Cas9-mediated knock-in. Sci Rep 9(1):3486. https://doi.org/10.1038/s41598-019-40181-w
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. https://doi.org/10.1038/35888
CAS
CrossRef
PubMed
Google Scholar
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498. https://doi.org/10.1038/35078107
CAS
CrossRef
PubMed
Google Scholar
Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958. https://doi.org/10.1101/gad.981002
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Rao DD, Senzer N, Cleary MA, Nemunaitis J (2009) Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development. Cancer Gene Ther 16(11):807–809. https://doi.org/10.1038/cgt.2009.53
CAS
CrossRef
PubMed
Google Scholar
Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H, Kato I (2009) Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res 69(23):9003–9011
CAS
CrossRef
PubMed
Google Scholar
Bunse M, Bendle GM, Linnemann C, Bies L, Schulz S, Schumacher TN, Uckert W (2014) RNAi-mediated TCR knockdown prevents autoimmunity in mice caused by mixed TCR dimers following TCR gene transfer. Mol Ther 22(11):1983–1991. https://doi.org/10.1038/mt.2014.142
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Campillo-Davo D, Fujiki F, Van den Bergh JMJ, De Reu H, Smits E, Goossens H, Sugiyama H, Lion E, Berneman ZN, Van Tendeloo V (2018) Efficient and non-genotoxic RNA-based engineering of human T cells using tumor-specific T cell receptors with minimal TCR mispairing. Front Immunol 9:2503. https://doi.org/10.3389/fimmu.2018.02503
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Tawara I, Kageyama S, Miyahara Y, Fujiwara H, Nishida T, Akatsuka Y, Ikeda H, Tanimoto K, Terakura S, Murata M, Inaguma Y, Masuya M, Inoue N, Kidokoro T, Okamoto S, Tomura D, Chono H, Nukaya I, Mineno J, Naoe T, Emi N, Yasukawa M, Katayama N, Shiku H (2017) Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood 130(18):1985–1994. https://doi.org/10.1182/blood-2017-06-791202
CAS
CrossRef
PubMed
Google Scholar
Kageyama S, Ikeda H, Miyahara Y, Imai N, Ishihara M, Saito K, Sugino S, Ueda S, Ishikawa T, Kokura S, Naota H, Ohishi K, Shiraishi T, Inoue N, Tanabe M, Kidokoro T, Yoshioka H, Tomura D, Nukaya I, Mineno J, Takesako K, Katayama N, Shiku H (2015) Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clin Cancer Res 21(10):2268–2277. https://doi.org/10.1158/1078-0432.CCR-14-1559
CAS
CrossRef
PubMed
Google Scholar
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint BG, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419. https://doi.org/10.1126/science.1088547
CAS
CrossRef
PubMed
Google Scholar
Yoshida J, Akagi K, Misawa R, Kokubu C, Takeda J, Horie K (2017) Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci Rep 7:43613. https://doi.org/10.1038/srep43613
CrossRef
PubMed
PubMed Central
Google Scholar
Clauss J, Obenaus M, Miskey C, Ivics Z, Izsvak Z, Uckert W, Bunse M (2018) Efficient non-viral T-cell engineering by sleeping beauty minicircles diminishing DNA toxicity and miRNAs silencing the endogenous T-cell receptors. Hum Gene Ther 29(5):569–584. https://doi.org/10.1089/hum.2017.136
CAS
CrossRef
PubMed
Google Scholar
Newrzela S, Cornils K, Li Z, Baum C, Brugman MH, Hartmann M, Meyer J, Hartmann S, Hansmann ML, Fehse B, von Laer D (2008) Resistance of mature T cells to oncogene transformation. Blood 112(6):2278–2286. https://doi.org/10.1182/blood-2007-12-128751
CAS
CrossRef
PubMed
Google Scholar
Marcucci KT, Jadlowsky JK, Hwang WT, Suhoski-Davis M, Gonzalez VE, Kulikovskaya I, Gupta M, Lacey SF, Plesa G, Chew A, Melenhorst JJ, Levine BL, June CH (2018) Retroviral and lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. Mol Ther 26(1):269–279. https://doi.org/10.1016/j.ymthe.2017.10.012
CAS
CrossRef
PubMed
Google Scholar
Ni B (2017) First-ever CAR T-cell therapy approved in U.S. Cancer Discov 7(10):OF1. https://doi.org/10.1158/2159-8290.CD-NB2017-126
CrossRef
Google Scholar
Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, Binder-Scholl GK, Smethurst DP, Gerry AB, Pumphrey NJ, Bennett AD, Brewer JE, Dukes J, Harper J, Tayton-Martin HK, Jakobsen BK, Hassan NJ, Kalos M, June CH (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122(6):863–871. https://doi.org/10.1182/blood-2013-03-490565
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, Phan GQ, Hughes MS, Kammula US, Miller AD, Hessman CJ, Stewart AA, Restifo NP, Quezado MM, Alimchandani M, Rosenberg AZ, Nath A, Wang T, Bielekova B, Wuest SC, Akula N, McMahon FJ, Wilde S, Mosetter B, Schendel DJ, Laurencot CM, Rosenberg SA (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151. https://doi.org/10.1097/CJI.0b013e3182829903
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Almasbak H, Walseng E, Kristian A, Myhre MR, Suso EM, Munthe LA, Andersen JT, Wang MY, Kvalheim G, Gaudernack G, Kyte JA (2015) Inclusion of an IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Ther 22(5):391–403. https://doi.org/10.1038/gt.2015.4
CAS
CrossRef
PubMed
Google Scholar
Kyte JA, Fane A, Pule M, Gaudernack G (2019) Transient redirection of T cells for adoptive cell therapy with telomerase-specific T helper cell receptors isolated from long term survivors after cancer vaccination. Oncoimmunology 8(4):e1565236. https://doi.org/10.1080/2162402X.2019.1565236
CrossRef
PubMed
PubMed Central
Google Scholar