Advertisement

Bioinformatic Application of Fluorescence-Based In Vivo RNA Regional Accessibility Data to Identify Novel sRNA Targets

  • Emily K. Bowman
  • Mia K. Mihailovic
  • Bridget Li
  • Lydia M. ContrerasEmail author
Protocol
  • 104 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2113)

Abstract

Data from fluorescence-based methods that measure in vivo hybridization efficacy of unique RNA regions can be used to infer regulatory activity and to identify novel RNA: RNA interactions. Here, we document the step-by-step analysis of fluorescence data collected using an in vivo regional RNA structural sensing system (iRS3) for the purpose of identifying potential functional sites that are likely to be involved in regulatory interactions. We also detail a step-by-step protocol that couples this in vivo accessibility data with computational mRNA target predictions to inform the selection of potentially true targets from long lists of thermodynamic predictions.

Key words

Regional RNA accessibility RNA hybridization efficacy Identification of RNA-binding sites RNA-RNA interactions In vivo fluorescence-based assays Electrophoretic mobility shift assay Target networks 

Notes

Acknowledgments

This work is supported by the Welch Foundation (Grant F-1756 to LMC) and the National Science Foundation (Grant MCB 1716777 to LMC and DGE-1610403 to MKM).

References

  1. 1.
    Dutta T, Srivastava S (2018) Small RNA-mediated regulation in bacteria: a growing palette of diverse mechanisms. Gene 656:60–72.  https://doi.org/10.1016/j.gene.2018.02.068CrossRefPubMedGoogle Scholar
  2. 2.
    Gelderman G, Contreras LM (2013) Discovery of posttranscriptional regulatory RNAs using next generation sequencing technologies. In: Alper HS (ed) Systems metabolic engineering: methods and protocols. Humana Press, Totowa, NJ, pp 269–295.  https://doi.org/10.1007/978-1-62703-299-5_14CrossRefGoogle Scholar
  3. 3.
    Leistra AN, Curtis NC, Contreras LM (2019) Regulatory non-coding sRNAs in bacterial metabolic pathway engineering. Metab Eng 52:190–214.  https://doi.org/10.1016/j.ymben.2018.11.013CrossRefPubMedGoogle Scholar
  4. 4.
    Carrier M-C, Lalaouna D, Massé E (2016) A game of tag: MAPS catches up on RNA interactomes. RNA Biol 13(5):473–476.  https://doi.org/10.1080/15476286.2016.1156830CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Figueroa-Bossi N, Bossi L (2018) Sponges and predators in the small RNA world. Microbiol Spectr 6(4).  https://doi.org/10.1128/microbiolspec.RWR-0021-2018
  6. 6.
    Kudla G, Granneman S, Hahn D, Beggs JD, Tollervey D (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci U S A 108(24):10010–10015.  https://doi.org/10.1073/pnas.1017386108CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu T, Zhang K, Xu S, Wang Z, Fu H, Tian B, Zheng X, Li W (2017) Detecting RNA-RNA interactions in E. coli using a modified CLASH method. BMC Genomics 18(1):343.  https://doi.org/10.1186/s12864-017-3725-3CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schönberger B, Schaal C, Schäfer R, Voß B (2018) RNA interactomics: recent advances and remaining challenges [version 1; referees: 2 approved]. F1000Res 7(1824).  https://doi.org/10.12688/f1000research.16146.1CrossRefGoogle Scholar
  9. 9.
    Melamed S, Peer A, Faigenbaum-Romm R, Gatt Yair E, Reiss N, Bar A, Altuvia Y, Argaman L, Margalit H (2016) Global mapping of small RNA-target interactions in Bacteria. Mol Cell 63(5):884–897.  https://doi.org/10.1016/j.molcel.2016.07.026CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Melamed S, Faigenbaum-Romm R, Peer A, Reiss N, Shechter O, Bar A, Altuvia Y, Argaman L, Margalit H (2017) Mapping the small RNA interactome in bacteria using RIL-seq. Nat Protoc 13:1.  https://doi.org/10.1038/nprot.2017.115. https://www.nature.com/articles/nprot.2017.115#supplementary-informationCrossRefPubMedGoogle Scholar
  11. 11.
    Waters SA, McAteer SP, Kudla G, Pang I, Deshpande NP, Amos TG, Leong KW, Wilkins MR, Strugnell R, Gally DL, Tollervey D, Tree JJ (2017) Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36(3):374–387.  https://doi.org/10.15252/embj.201694639CrossRefPubMedGoogle Scholar
  12. 12.
    Pain A, Ott A, Amine H, Rochat T, Bouloc P, Gautheret D (2015) An assessment of bacterial small RNA target prediction programs. RNA Biol 12(5):509–513.  https://doi.org/10.1080/15476286.2015.1020269CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Beisel CL, Storz G (2010) Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 34(5):866–882.  https://doi.org/10.1111/j.1574-6976.2010.00241.xCrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Holmqvist E, Vogel J (2018) RNA-binding proteins in bacteria. Nat Rev Microbiol.  https://doi.org/10.1038/s41579-018-0049-5CrossRefGoogle Scholar
  15. 15.
    Peer A, Margalit H (2014) Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions. RNA (New York, NY) 20(7):994–1003.  https://doi.org/10.1261/rna.043133.113CrossRefGoogle Scholar
  16. 16.
    Sowa SW, Vazquez-Anderson J, Clark CA, De La Peña R, Dunn K, Fung EK, Khoury MJ, Contreras LM (2015) Exploiting post-transcriptional regulation to probe RNA structures in vivo via fluorescence. Nucleic Acids Res 43(2):e13–e13.  https://doi.org/10.1093/nar/gku1191CrossRefPubMedGoogle Scholar
  17. 17.
    Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24.  https://doi.org/10.1093/bioinformatics/btn544CrossRefGoogle Scholar
  18. 18.
    Wright PR, Georg J, Mann M, Sorescu DA, Richter AS, Lott S, Kleinkauf R, Hess WR, Backofen R (2014) CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res 42(Web Server issue):W119–W123.  https://doi.org/10.1093/nar/gku359CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mann M, Wright PR, Backofen R (2017) IntaRNA 2.0: enhanced and customizable prediction of RNA–RNA interactions. Nucleic Acids Res 45(Web Server issue):W435–W439.  https://doi.org/10.1093/nar/gkx279CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Leistra AN, Mihailovic MK, Contreras LM (2018) Fluorescence-based methods for characterizing RNA interactions in vivo. Methods in Mol Biol 1737:129–164.  https://doi.org/10.1007/978-1-4939-7634-8_9CrossRefGoogle Scholar
  21. 21.
    Mihailovic MK, Vazquez-Anderson J, Li Y, Fry V, Vimalathas P, Herrera D, Lease RA, Powell WB, Contreras LM (2018) High-throughput in vivo mapping of RNA accessible interfaces to identify functional sRNA binding sites. Nat Commun 9(1):4084.  https://doi.org/10.1038/s41467-018-06207-zCrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gruber CC, Sperandio V (2015) Global analysis of posttranscriptional regulation by GlmY and GlmZ in Enterohemorrhagic Escherichia coli O157:H7. Infect Immun 83(4):1286–1295.  https://doi.org/10.1128/IAI.02918-14CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  24. 24.
    Müller K, Wickham H, François R, Henry L (2018) dplyr: A Grammar of Data ManipulationGoogle Scholar
  25. 25.
    H. Pagès P Aboyoun, R. Gentleman and S. DebRoy (2018) Biostrings: Efficient manipulation of biological stringsGoogle Scholar
  26. 26.
    Wickham H (2018) stringr: Simple, Consistent Wrappers for Common String OperationsGoogle Scholar
  27. 27.
    Anaconda Software Distribution (2017) Computer software. Vers. 2–2.4.0. Anaconda, Inc.Google Scholar
  28. 28.
    McKinney W (2011) pandas: a Foundational Python Library for Data Analysis and StatisticsGoogle Scholar
  29. 29.
    Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192.  https://doi.org/10.1093/bib/bbs017CrossRefPubMedGoogle Scholar
  30. 30.
    Vazquez-Anderson J, Mihailovic MK, Baldridge KC, Reyes KG, Haning K, Cho SH, Amador P, Powell WB, Contreras LM (2017) Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions. Nucleic Acids Res 45(9):5523–5538.  https://doi.org/10.1093/nar/gkx115CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2CrossRefGoogle Scholar
  32. 32.
    Leistra AN, Amador P, Buvanendiran A, Moon-Walker A, Contreras LM (2017) Rational modular RNA engineering based on in vivo profiling of structural accessibility. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.7b00185CrossRefGoogle Scholar
  33. 33.
    Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: De-novo-designed regulators of gene expression. Cell 159(4):925–939.  https://doi.org/10.1016/j.cell.2014.10.002CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173.  https://doi.org/10.1002/jcc.21596CrossRefPubMedGoogle Scholar
  35. 35.
    Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Muñiz-Rascado L, García-Sotelo JS, Alquicira-Hernández K, Martínez-Flores I, Pannier L, Castro-Mondragón JA, Medina-Rivera A, Solano-Lira H, Bonavides-Martínez C, Pérez-Rueda E, Alquicira-Hernández S, Porrón-Sotelo L, López-Fuentes A, Hernández-Koutoucheva A, Del Moral-Chávez V, Rinaldi F, Collado-Vides J (2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44(D1):D133–D143.  https://doi.org/10.1093/nar/gkv1156CrossRefGoogle Scholar
  36. 36.
    (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169.  https://doi.org/10.1093/nar/gkw1099

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Emily K. Bowman
    • 1
  • Mia K. Mihailovic
    • 1
  • Bridget Li
    • 1
  • Lydia M. Contreras
    • 1
    Email author
  1. 1.Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinUSA

Personalised recommendations