Advertisement

Characterization of Immune Cell Subset Expansion in Response to Therapeutic Treatment in Mice

  • Jakub Tomala
  • Jamie B. SpanglerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2111)

Abstract

Flow cytometry has revolutionized the field of molecular immunology, enabling the monitoring and characterization of immune events at the single-cell level. Here, we describe a flow cytometry-based workflow to quantify the activation of specific immune cell subsets in mice in response to a molecular intervention. Compared to laborious long-term disease models, this technique allows for relatively rapid evaluation of candidate therapeutics designed to elicit a targeted immune response. This approach has the range to address both disease applications in which an immunostimulatory effect would be desired (e.g., cancer, infectious disease) or those in which an immunosuppressive effect would be desired (e.g., autoimmune disorders, transplantation medicine). Overall, our technique presents a powerful and accessible strategy for preliminary in vivo assessment of potential immunotherapeutics.

Key words

Immunology T cell Natural killer cell Flow cytometry Immunophenotyping Immunotherapy 

References

  1. 1.
    Muirhead KA, Horan PK, Poste G (1985) Flow cytometry: present and future. Nat Biotechnol 3(4):337–356CrossRefGoogle Scholar
  2. 2.
    Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37(2):163–176CrossRefGoogle Scholar
  3. 3.
    Macey MG (ed) (2007) Flow cytometry: principles and applications [Internet]. Humana: Totowa, NJ. http://www.myilibrary.com?id=97216. Accessed 3 Apr 2019
  4. 4.
    Spangler JB, Moraga I, Mendoza JL, Garcia KC (2015) Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol 33(1):139–167CrossRefGoogle Scholar
  5. 5.
    Kureshi R, Bahri M, Spangler JB (2018) Reprogramming immune proteins as therapeutics using molecular engineering. Curr Opin Chem Eng 19:27–34CrossRefGoogle Scholar
  6. 6.
    Taebel DW (1990) The importance of animals in biomedical research. Wis Med J 89(4):155. 158PubMedGoogle Scholar
  7. 7.
    Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308CrossRefGoogle Scholar
  8. 8.
    Ford ML, Koehn BH, Wagener ME, Jiang W, Gangappa S, Pearson TC and Larsen CP (2007) Antigen-specific precursor frequency impacts T cell proliferation, differentiation, and requirement for costimulation. J Exp Med 204(2):299–309. CrossRefGoogle Scholar
  9. 9.
    Svedova M, Masin J, Fiser R, Cerny O, Tomala J, Freudenberg M, Tuckova L, Kovar M, Dadaglio G, Adkins I, Sebo P (2016) Pore-formation by adenylate cyclase toxoid activates dendritic cells to prime CD8+ and CD4+ T cells. Immunol Cell Biol 94(4):322–333CrossRefGoogle Scholar
  10. 10.
    Skopova K, Tomalova B, Kanchev I, Rossmann P, Svedova M, Adkins I, Bibova I, Tomala J, Masin J, Guiso N, Osicka R, Sedlacek R, Kovar M, Sebo P (2017) Cyclic AMP-elevating capacity of adenylate cyclase toxin-hemolysin is sufficient for lung infection but not for full virulence of Bordetella pertussis. Infect Immun 85(6):e00937CrossRefGoogle Scholar
  11. 11.
    Spangler JB, Tomala J, Luca VC, Jude KM, Dong S, Ring AM, Votavova P, Pepper M, Kovar M, Garcia KC (2015) Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42(5):815–825CrossRefGoogle Scholar
  12. 12.
    Spangler JB, Trotta E, Tomala J, Peck A, Young TA, Savvides CS, Silveria S, Votavova P, Salafsky J, Pande VS, Kovar M, Bluestone JA, Garcia KC (2018) Engineering a single-agent cytokine/antibody fusion that selectively expands regulatory T cells for autoimmune disease therapy. J Immunol 201(7):2094–2106CrossRefGoogle Scholar
  13. 13.
    Trotta E, Bessette PH, Silveria SL, Ely LK, Jude KM, Le DT, Holst CR, Coyle A, Potempa M, Lanier LL, Garcia KC, Crellin NK, Rondon IJ, Bluestone JA (2018) A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 24(7):1005–1014CrossRefGoogle Scholar
  14. 14.
    Sockolosky JT, Trotta E, Parisi G, Picton L, Su LL, Le AC, Chhabra A, Silveria SL, George BM, King IC, Tiffany MR, Jude K, Sibener LV, Baker D, Shizuru JA, Ribas A, Bluestone JA, Garcia KC (2018) Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359(6379):1037–1042CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic

Personalised recommendations