Advertisement

A Carrier Strategy for Mass Cytometry Analysis of Small Numbers of Cells

  • Xian Jia
  • Xiaojuan Zhou
  • Haiping Zheng
  • Shan Jiang
  • Jiannan Weng
  • Lei Huang
  • Zhiqiang Du
  • Changchun Xiao
  • Lei ZhangEmail author
  • Xiao Lei ChenEmail author
  • Guo FuEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2111)

Abstract

The recent launch of mass cytometry or cytometry by time of flight (CyTOF) has revolutionized flow cytometry. Similar to fluorescence flow cytometry, a key challenge for CyTOF is to analyze samples of limited amount or very rare cell populations under various experimental settings. Here we describe a carrier strategy that significantly reduces the required sample amount without losing analytical resolution. We were able to detect as few as 5 × 104 human peripheral blood mononuclear cells (PBMCs) using this method. This simple method thus enables the maximal usage of valuable clinical samples.

Key words

Mass cytometry (CyTOF) PBMCs Small number of cells Carrier EL4 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Fujian Province of China No.2018 J05065, to LZ, and National Natural Science Foundation of China grants 31770952, 31570911, and 2017ZX10202203-003- 001 to G.F.

References

  1. 1.
    Swartz MA, Iida N, Roberts EW et al (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72(10):2473–2480CrossRefGoogle Scholar
  2. 2.
    Satija R, Shalek AK (2014) Heterogeneity in immune responses: from populations to single cells. Trends Immunol 35(5):219–229CrossRefGoogle Scholar
  3. 3.
    Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822CrossRefGoogle Scholar
  4. 4.
    Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696CrossRefGoogle Scholar
  5. 5.
    Leipold MD, Newell EW, Maecker HT (2015) Multiparameter phenotyping of human PBMCs using mass cytometry. Methods Mol Biol 1343:81–95CrossRefGoogle Scholar
  6. 6.
    Pejoski D, Tchitchek N, Rodriguez Pozo A et al (2016) Identification of vaccine-altered circulating B cell phenotypes using mass cytometry and a two-step clustering analysis. J Immunol 196(11):4814–4831CrossRefGoogle Scholar
  7. 7.
    Chevrier S, Levine JH, Zanotelli VRT et al (2017) An immune Atlas of clear cell renal cell carcinoma. Cell 169(4):736–749.e718CrossRefGoogle Scholar
  8. 8.
    Lavin Y, Kobayashi S, Leader A et al (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169(4):750–765.e717CrossRefGoogle Scholar
  9. 9.
    Good Z, Borges L, Vivanco Gonzalez N et al (2019) Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells. Nat Biotechnol 37(3):259–266CrossRefGoogle Scholar
  10. 10.
    Atkuri KR, Stevens JC, Neubert H (2015) Mass cytometry: a highly multiplexed single-cell technology for advancing drug development. Drug Metab Dispos 43(2):227–233CrossRefGoogle Scholar
  11. 11.
    Leary JF (1994) Chapter 20 strategies for rare cell detection and isolation. Methods Cell Biol 42:331–358CrossRefGoogle Scholar
  12. 12.
    Saeys Y, Van Gassen S, Lambrecht BN (2016) Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 16(7):449–462CrossRefGoogle Scholar
  13. 13.
    Van Der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(Nov):2579–2605Google Scholar
  14. 14.
    Van Gassen S, Callebaut B, Van Helden MJ et al (2015) FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87(7):636–645CrossRefGoogle Scholar
  15. 15.
    Zeglis BM, Pierre VC, Barton JK (2007) Metallo-intercalators and metallo-insertors. Chem Commun (Camb) 28(44):4565–4579CrossRefGoogle Scholar
  16. 16.
    Kutscher S, Dembek CJ, Deckert S et al (2013) Overnight resting of PBMC changes functional signatures of antigen specific T- cell responses: impact for immune monitoring within clinical trials. PLoS One 8(10):e76215CrossRefGoogle Scholar
  17. 17.
    Yao Y, Liu R, Shin MS et al (2014) CyTOF supports efficient detection of immune cell subsets from small samples. J Immunol Methods 415:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
  2. 2.Innovation CenterShanghai Benemae Pharmaceutical CorporationShanghaiChina
  3. 3.Cancer Research Center of Xiamen UniversityXiamenChina

Personalised recommendations