Skip to main content

Methods to Quantify In Vivo Phagocytic Uptake and Opsonization of Live or Killed Microbes in Drosophila melanogaster

Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Here we describe different phagocytosis assays in Drosophila, using various killed or live microbes (bacteria and fungi). Different ex vivo and in vivo approaches are shown, to quantify larval and adult phagocytosis of microorganisms by hemocytes. We also explain how to perform an in vivo opsonization assay. Altogether, these protocols represent a useful range of tools to the researcher interested in the detailed analysis of phagocytosis in the context of the study of host-pathogen relationships.

Key words

  • Opsonization
  • Phagocytosis
  • Drosophila
  • Larva
  • Hemocytes
  • Bacteria
  • Fungi
  • Yeast
  • Infection
  • pHrodo

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0259-1_5
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0259-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    CAS  CrossRef  Google Scholar 

  2. Gold KS, Brückner K (2015) Macrophages and cellular immunity in Drosophila melanogaster. Semin Immunol 27(6):357–368

    CAS  CrossRef  Google Scholar 

  3. Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in drosophila. Dev Biol 230:243–257

    CAS  CrossRef  Google Scholar 

  4. Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M et al (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in drosophila. Cell 123:335–346

    CAS  CrossRef  Google Scholar 

  5. Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA et al (2007) A Model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3:e173

    CrossRef  Google Scholar 

  6. Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C et al (2011) Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S A 108:17378–17383

    CAS  CrossRef  Google Scholar 

  7. Nehme NT, Quintin J, Cho JH, Lee J, Lafarge MC, Kocks C et al (2011) Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections. PLoS One 6:e14743

    CAS  CrossRef  Google Scholar 

  8. Quintin J, Asmar J, Matskevich AA, Lafarge MC, Ferrandon D (2013) The Drosophila toll pathway controls but does not clear Candida glabrata infections. J Immunol 190:2818–2827

    CAS  CrossRef  Google Scholar 

  9. Pearson AM, Baksa K, Rämet M, Protas M, McKee M, Brown D et al (2003) Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila. Microbes Infect 5(10):815–824

    CAS  CrossRef  Google Scholar 

  10. Elrod-Erickson M, Mishra S, Schneider D (2000) Interactions between the cellular and humoral immune responses in Drosophila. Curr Biol 10:781–784

    CAS  CrossRef  Google Scholar 

  11. Nazario-Toole AE, Wu LP (2019) Assessing the cellular immune response of the fruit Fly, Drosophila melanogaster, using an in vivo phagocytosis assay. J Vis Exp 146

    Google Scholar 

  12. Hoffmann D (1976) Role of phagocytosis and soluble antibacterial factors in experimental immunization of Locusta migratoria. C R Acad Hebd Seances Acad Sci D 282:1021–1024

    CAS  PubMed  Google Scholar 

  13. Rutschmann S, Kilinc A, Ferrandon D (2002) The Toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. J Immunol 168:1542–1546

    CAS  CrossRef  Google Scholar 

  14. Defaye A, Evans I, Crozatier M, Wood W, Lemaitre B, Leulier F (2009) Genetic ablation of drosophila phagocytes reveals their contribution to both development and resistance to bacterial infections. J Innate Immun 1:322–334

    CAS  CrossRef  Google Scholar 

  15. Charroux B, Royet J (2009) Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the drosophila immune response. Proc Natl Acad Sci U S A 106:9797–9802

    CAS  CrossRef  Google Scholar 

  16. Haller S, Franchet A, Hakkim A, Chen J, Drenkard E, Yu S et al (2018) Quorum-sensing regulator RhlR but not its autoinducer RhlI enables pseudomonas to evade opsonization. EMBO Rep 19(5):e44880

    CrossRef  Google Scholar 

  17. Avet-Rochex A, Bergeret E, Attree I, Meister M, Fauvarque MO (2005) Suppression of drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa. Cell Microbiol 7:799–810

    CAS  CrossRef  Google Scholar 

  18. Avet-Rochex A, Perrin J, Bergeret E, Fauvarque MO (2007) Rac2 is a major actor of drosophila resistance to Pseudomonas aeruginosa acting in phagocytic cells. Genes Cells 12:1193–1204

    CAS  CrossRef  Google Scholar 

  19. Sinenko SA, Mathey-Prevot B (2004) Increased expression of drosophila tetraspanin, Tsp68C, suppresses the abnormal proliferation of ytr-deficient and Ras/Raf-activated hemocytes. Oncogene 23:9120–9128

    CAS  CrossRef  Google Scholar 

  20. Haller S, Limmer S, Ferrandon D (2014) Assessing pseudomonas virulence with a nonmammalian host: Drosophila melanogaster. Methods Mol Biol 1149:723–740

    CrossRef  Google Scholar 

  21. Lestradet M, Lee K-Z, Ferrandon D (2014) Drosophila as a model for intestinal infections. Methods Mol Biol 1197:11–40

    CAS  CrossRef  Google Scholar 

  22. Kurucz E, Markus R, Zsamboki J, Folkl-Medzihradszky K, Darula Z, Vilmos P et al (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in drosophila plasmatocytes. Curr Biol 17:649–654

    CAS  CrossRef  Google Scholar 

  23. Bosch PS, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, et al (2019) Blood cells of adult Drosophila do not expand, but control survival after bacterial infection by induction of Drosocin around their reservoir at the respiratory epithelia. bioRxiv. 578864

    Google Scholar 

  24. Datta SK, Okamoto S, Hayashi T, Shin SS, Mihajlov I, Fermin A et al (2006) Vaccination with irradiated listeria induces protective T cell immunity. Immunity 25:143–152

    CAS  CrossRef  Google Scholar 

  25. Wheeler RT, Fink GRA (2006) Drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2(4):e35

    CrossRef  Google Scholar 

  26. Regan JC, Brandão AS, Leitão AB, Mantas Dias AR, Sucena E, Jacinto A et al (2013) Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in drosophila. PLoS Pathog 9(10):e1003720

    CrossRef  Google Scholar 

  27. Pelts M, Pandya SM, Oh CJ, Model MA (2011) Thickness profiling of formaldehyde-fixed cells by transmission-through-dye microscopy. BioTechniques 50(6):389–396

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

We would like to thank François Lapraz (Institute of Biology Valrose, Nice, France) and Gábor Csordás (Institute for Genetics, University of Cologne) for their advice for adult hemolymph collection and Marion Draheim for critical reading of the manuscript. DF’s teamwork at SFHI is partially funded through the 1,000 Talent Program of Global experts of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Liégeois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Liégeois, S., Wang, W., Ferrandon, D. (2020). Methods to Quantify In Vivo Phagocytic Uptake and Opsonization of Live or Killed Microbes in Drosophila melanogaster. In: Sandrelli, F., Tettamanti, G. (eds) Immunity in Insects. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0259-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0259-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0258-4

  • Online ISBN: 978-1-0716-0259-1

  • eBook Packages: Springer Protocols