Analysis of IFNγ-Induced Migration of Ovarian Cancer Cells

  • Bijaya Gaire
  • Mohammad M. Uddin
  • Yue Zou
  • Ivana VancurovaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2108)


IFNγ is a pleiotropic cytokine that has both antitumor functions and pro-tumorigenic effects. Recent studies have shown that IFNγ induces expression of the immune checkpoint PD-L1 in ovarian cancer (OC) cells, resulting in their increased proliferation and tumor growth. Here, we tested the hypothesis that IFNγ induces migration of OC cells. Using the scratch wound healing assay, our results demonstrate that IFNγ promotes OC cell migration, thus adding to the complexities of IFNγ pro-tumorigenic mechanisms. This chapter describes analysis of the IFNγ-induced migration of OC cells by the wound healing assay followed by quantification of the obtained images using ImageJ software.

Key words

Cell migration Cell proliferation Interferon-γ Ovarian cancer Scratch assay Wound healing assay 



This work was supported by NIH grant CA202775 to I. Vancurova.


  1. 1.
    Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13:95–109CrossRefGoogle Scholar
  2. 2.
    Zaidi MR, Merlino G (2011) The two faces of interferon-γ in cancer. Clin Cancer Res 17:6118–6124CrossRefGoogle Scholar
  3. 3.
    Mandai M, Hamanishi J, Abiko K et al (2016) Dual faces of IFNγ in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin Cancer Res 22:2329–2334CrossRefGoogle Scholar
  4. 4.
    Mojic M, Takeda K, Hayakawa Y (2017) The dark side of IFN-γ: its role in promoting cancer immunoevasion. Int J Mol Sci 19(1):E89. Scholar
  5. 5.
    Castro F, Cardoso AP, Gonçalves RM et al (2018) Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol 9:847CrossRefGoogle Scholar
  6. 6.
    Zaidi MR (2019) The interferon-gamma paradox in cancer. J Interf Cytokine Res 9:30–38CrossRefGoogle Scholar
  7. 7.
    Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99:12293–12297CrossRefGoogle Scholar
  8. 8.
    Loke P, Allison JP (2003) PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A 100:5336–5341CrossRefGoogle Scholar
  9. 9.
    Chinai JM, Janakiram M, Chen F et al (2015) New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci 36:587–595CrossRefGoogle Scholar
  10. 10.
    Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375:1767–1778CrossRefGoogle Scholar
  11. 11.
    Azuma T, Yao S, Zhu G et al (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111:3635–3643CrossRefGoogle Scholar
  12. 12.
    Chang CH, Qiu J, O’Sullivan D et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241CrossRefGoogle Scholar
  13. 13.
    Clark CA, Gupta HB, Sareddy G et al (2016) Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res 76:6964–6974CrossRefGoogle Scholar
  14. 14.
    Abiko K, Mandai M, Hamanishi J et al (2013) PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin Cancer Res 19:1363–1374CrossRefGoogle Scholar
  15. 15.
    Abiko K, Matsumura N, Hamanishi J et al (2015) IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer 112:1501–1509CrossRefGoogle Scholar
  16. 16.
    Zou Y, Uddin MM, Padmanabhan S et al (2018) The proto-oncogene Bcl3 induces immune checkpoint PD-L1 expression, mediating proliferation of ovarian cancer cells. J Biol Chem 293:15483–15496CrossRefGoogle Scholar
  17. 17.
    Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333CrossRefGoogle Scholar
  18. 18.
    Cory G (2011) Scratch-wound assay. Methods Mol Biol 769:25–30CrossRefGoogle Scholar
  19. 19.
    Kramer N, Walzl A, Unger C et al (2013) In vitro cell migration and invasion assays. Mutat Res 752:10–24CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Bijaya Gaire
    • 1
  • Mohammad M. Uddin
    • 1
  • Yue Zou
    • 1
  • Ivana Vancurova
    • 1
    Email author
  1. 1.Department of Biological SciencesSt. John’s UniversityQueensUSA

Personalised recommendations