Advertisement

Optogenetics: Rho GTPases Activated by Light in Living Macrophages

  • Maren Hülsemann
  • Polina V. Verkhusha
  • Peng Guo
  • Veronika Miskolci
  • Dianne CoxEmail author
  • Louis HodgsonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2108)

Abstract

Genetically encoded optogenetic tools are increasingly popular and useful for perturbing signaling pathways with high spatial and temporal resolution in living cells. Here, we show basic procedures employed to implement optogenetics of Rho GTPases in a macrophage cell line. Methods described here are generally applicable to other genetically encoded optogenetic tools utilizing the blue-green spectrum of light for activation, designed for specific proteins and enzymatic targets important for immune cell functions.

Key words

Rho GTPases Optogenetics Photoactivatable proteins LOV2 

Notes

Acknowledgements

This work was supported by National Institutes of Health grant T32GM007491 to V.M., R01GM129098 and R01GM132098 to L.H. National Cancer Institute P30CA013330 for Analytical Imaging Facility support. Irma T. Hirschl Career Scientist Award to L.H. pTriEX-mVenus-PA-Cdc42 (Addgene #75263), pTriEX-mVenus-PA-Rac1 (Addgene #22007), pTriEX-PA-Rac1 C450R (Addgene #22025), pTriEX-NTOM20-LOV2 WT (Addgene #81009) and pTriEx-mVenus-Zdk1-VAV2 DH/PH/C1 (Addgene #81133) were gifts from Dr. Klaus Hahn (UNC-Chapel Hill).

References

  1. 1.
    Wang H, Hahn KM (2016) LOVTRAP: a versatile method to control protein function with light. Curr Protoc Cell Biol 73:21.10.1–21.10.14.  https://doi.org/10.1002/cpcb.12CrossRefGoogle Scholar
  2. 2.
    Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV (2015) Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem 84:519–550.  https://doi.org/10.1146/annurev-biochem-060614-034411CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wu YI, Wang X, He L, Montell D, Hahn KM (2011) Spatiotemporal control of small GTPases with light using the LOV domain. Methods Enzymol 497:393–407.  https://doi.org/10.1016/B978-0-12-385075-1.00016-0CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461(7260):104–108CrossRefGoogle Scholar
  5. 5.
    Christie JM, Gawthorne J, Young G, Fraser NJ, Roe AJ (2012) LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. Mol Plant 5(3):533–544.  https://doi.org/10.1093/mp/sss020CrossRefPubMedGoogle Scholar
  6. 6.
    Losi A, Gartner W (2012) The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu Rev Plant Biol 63:49–72.  https://doi.org/10.1146/annurev-arplant-042811-105538CrossRefPubMedGoogle Scholar
  7. 7.
    Pudasaini A, El-Arab KK, Zoltowski BD (2015) LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front Mol Biosci 2:18.  https://doi.org/10.3389/fmolb.2015.00018CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang K, Cui B (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33(2):92–100.  https://doi.org/10.1016/j.tibtech.2014.11.007CrossRefPubMedGoogle Scholar
  9. 9.
    Chernov KG, Redchuk TA, Omelina ES, Verkhusha VV (2017) Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chem Rev 117(9):6423–6446.  https://doi.org/10.1021/acs.chemrev.6b00700CrossRefPubMedGoogle Scholar
  10. 10.
    Bravo-Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J (2011) A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol 21(8):635–644. pii: S0960-9822(11)00311-3CrossRefGoogle Scholar
  11. 11.
    Bravo-Cordero JJ, Moshfegh Y, Condeelis J, Hodgson L (2013) Live cell imaging of RhoGTPase biosensors in tumor cells. Methods Mol Biol 1046:359–370.  https://doi.org/10.1007/978-1-62703-538-5_22CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L (2014) A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 16(6):574–586.  https://doi.org/10.1038/ncb2972CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Donnelly SK, Cabrera R, Mao SPH, Christin JR, Wu B, Guo W, Bravo-Cordero JJ, Condeelis JS, Segall JE, Hodgson L (2017) Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J Cell Biol 216(12):4331–4349.  https://doi.org/10.1083/jcb.201704048CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hanna S, Miskolci V, Cox D, Hodgson L (2014) A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging. PLoS One 9(5):e96469.  https://doi.org/10.1371/journal.pone.0096469CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Miskolci V, Wu B, Moshfegh Y, Cox D, Hodgson L (2016) Optical tools to study the isoform-specific roles of small GTPases in immune cells. J Immunol 196(8):3479–3493.  https://doi.org/10.4049/jimmunol.1501655CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hanna SJ, McCoy-Simandle K, Miskolci V, Guo P, Cammer M, Hodgson L, Cox D (2017) The role of rho-GTPases and actin polymerization during macrophage tunneling nanotube biogenesis. Sci Rep 7(1):8547.  https://doi.org/10.1038/s41598-017-08950-7CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang H, Vilela M, Winkler A, Tarnawski M, Schlichting I, Yumerefendi H, Kuhlman B, Liu R, Danuser G, Hahn KM (2016) LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat Methods 13(9):755–758.  https://doi.org/10.1038/nmeth.3926CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dagliyan O, Tarnawski M, Chu PH, Shirvanyants D, Schlichting I, Dokholyan NV, Hahn KM (2016) Engineering extrinsic disorder to control protein activity in living cells. Science 354(6318):1441–1444.  https://doi.org/10.1126/science.aah3404CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186(9):1487–1494CrossRefGoogle Scholar
  20. 20.
    Spiering D, Bravo-Cordero JJ, Moshfegh Y, Miskolci V, Hodgson L (2013) Quantitative ratiometric imaging of FRET-biosensors in living cells. Methods Cell Biol 114:593–609.  https://doi.org/10.1016/B978-0-12-407761-4.00025-7CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Spiering D, Hodgson L (2012) Multiplex imaging of Rho family GTPase activities in living cells. Methods Mol Biol 827:215–234.  https://doi.org/10.1007/978-1-61779-442-1_15CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Miskolci V, Hodgson L, Cox D (2017) Using fluorescence resonance energy transfer-based biosensors to probe Rho GTPase activation during phagocytosis. Methods Mol Biol 1519:125–143.  https://doi.org/10.1007/978-1-4939-6581-6_9CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shcherbakova DM, Cox Cammer N, Huisman TM, Verkhusha VV, Hodgson L (2018) Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat Chem Biol 14:591.  https://doi.org/10.1038/s41589-018-0044-1CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Maren Hülsemann
    • 1
    • 2
  • Polina V. Verkhusha
    • 1
  • Peng Guo
    • 1
    • 2
    • 3
  • Veronika Miskolci
    • 4
  • Dianne Cox
    • 1
    • 2
    Email author
  • Louis Hodgson
    • 1
    • 2
    Email author
  1. 1.Department of Anatomy and Structural BiologyAlbert Einstein College of MedicineBronxUSA
  2. 2.Gruss-Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxUSA
  3. 3.Analytical Imaging FacilityAlbert Einstein College of MedicineBronxUSA
  4. 4.Department of Medical Microbiology and ImmunologyUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations