Advertisement

Analysis of Interleukin-4-Induced Class Switch Recombination in Mouse Myeloma CH12F3-2 Cells

  • Wenjun Wu
  • Zhihui Xiao
  • Deon Buritis
  • Vladimir PoltoratskyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2108)

Abstract

Affinity maturation of B lymphocytes is a process that includes somatic hypermutation and class switch recombination. Class switch recombination is a fundamental factor of the human adaptive immunity. The perturbation of this process has an adverse effect on human health, and results in global chromosome rearrangements and cell transformation. Evaluation of the class switch recombination efficiency is an important component of laboratory diagnosis of immunotoxic components. Here we describe a method for testing the efficiency of the class switch recombination. Cultivation of mouse myeloma CH12F3-2 cell line with anti-CD40 antibodies, transforming growth factor beta, and recombinant interleukin-4 (IL-4) triggers a cascade of signal transduction network events that lead to switching the immunoglobulin isotypes from IgM to IgA. This chapter describes the methodology of class switch recombination assay for assessment of the effect of environmental pollutants in toxicological laboratory diagnostics.

Key words

Interleukin-4 Class switch recombination Cadmium toxicity Flow cytometry Real-time PCR NF-κB signaling STAT6 signaling SMAD signaling 

References

  1. 1.
    Carroll MC, Isenman DE (2012) Regulation of humoral immunity by complement. Immunity 37(2):199–207.  https://doi.org/10.1016/j.immuni.2012.08.002CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kawakami T, Galli SJ (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2(10):773–786.  https://doi.org/10.1038/nri914CrossRefPubMedGoogle Scholar
  3. 3.
    Macpherson AJ, Geuking MB, McCoy KD (2012) Homeland security: IgA immunity at the frontiers of the body. Trends Immunol 33(4):160–167.  https://doi.org/10.1016/j.it.2012.02.002CrossRefPubMedGoogle Scholar
  4. 4.
    Nimmerjahn F, Ravetch JV (2011) FcgammaRs in health and disease. Curr Top Microbiol Immunol 350:105–125.  https://doi.org/10.1007/82_2010_86CrossRefPubMedGoogle Scholar
  5. 5.
    Pabst O (2012) New concepts in the generation and functions of IgA. Nat Rev Immunol 12(12):821–832.  https://doi.org/10.1038/nri3322CrossRefPubMedGoogle Scholar
  6. 6.
    Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725.  https://doi.org/10.1038/nri2155CrossRefPubMedGoogle Scholar
  7. 7.
    Nakamura M, Kondo S, Sugai M, Nazarea M, Imamura S, Honjo T (1996) High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int Immunol 8(2):193–201CrossRefGoogle Scholar
  8. 8.
    Pene J, Rousset F, Briere F, Chretien I, Paliard X, Banchereau J, Spits H, De Vries JE (1988) IgE production by normal human B cells induced by alloreactive T cell clones is mediated by IL-4 and suppressed by IFN-gamma. J Immunol 141(4):1218–1224PubMedGoogle Scholar
  9. 9.
    Vercelli D, Jabara HH, Arai K, Yokota T, Geha RS (1989) Endogenous interleukin 6 plays an obligatory role in interleukin 4-dependent human IgE synthesis. Eur J Immunol 19(8):1419–1424.  https://doi.org/10.1002/eji.1830190811CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang K, Clark EA, Saxon A (1991) CD40 stimulation provides an IFN-gamma-independent and IL-4-dependent differentiation signal directly to human B cells for IgE production. J Immunol 146(6):1836–1842PubMedGoogle Scholar
  11. 11.
    Tran TH, Nakata M, Suzuki K, Begum NA, Shinkura R, Fagarasan S, Honjo T, Nagaoka H (2010) B cell-specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nat Immunol 11(2):148–154.  https://doi.org/10.1038/ni.1829CrossRefPubMedGoogle Scholar
  12. 12.
    Crouch EE, Li Z, Takizawa M, Fichtner-Feigl S, Gourzi P, Montano C, Feigenbaum L, Wilson P, Janz S, Papavasiliou FN, Casellas R (2007) Regulation of AID expression in the immune response. J Exp Med 204(5):1145–1156.  https://doi.org/10.1084/jem.20061952CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dedeoglu F, Horwitz B, Chaudhuri J, Alt FW, Geha RS (2004) Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFkappaB. Int Immunol 16(3):395–404CrossRefGoogle Scholar
  14. 14.
    Huong le T, Kobayashi M, Nakata M, Shioi G, Miyachi H, Honjo T, Nagaoka H (2013) In vivo analysis of Aicda gene regulation: a critical balance between upstream enhancers and intronic silencers governs appropriate expression. PLoS One 8(4):e61433.  https://doi.org/10.1371/journal.pone.0061433CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Poltoratsky V, Goodman MF, Scharff MD (2000) Error-prone candidates vie for somatic mutation. J Exp Med 192(10):F27–F30CrossRefGoogle Scholar
  16. 16.
    Poltoratsky VP, Wilson SH, Kunkel TA, Pavlov YI (2004) Recombinogenic phenotype of human activation-induced cytosine deaminase. J Immunol 172(7):4308–4313CrossRefGoogle Scholar
  17. 17.
    Chang TP, Vancurova I (2013) NFkappaB function and regulation in cutaneous T-cell lymphoma. Am J Cancer Res 3(5):433–445PubMedPubMedCentralGoogle Scholar
  18. 18.
    DiDonato JA, Mercurio F, Karin M (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246(1):379–400.  https://doi.org/10.1111/j.1600-065X.2012.01099.xCrossRefPubMedGoogle Scholar
  19. 19.
    Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146.  https://doi.org/10.1146/annurev.immunol.24.021605.090737CrossRefPubMedGoogle Scholar
  20. 20.
    Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630.  https://doi.org/10.1038/nrm3434CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102(5):553–563.  https://doi.org/10.1016/s0092-8674(00)00078-7CrossRefPubMedGoogle Scholar
  22. 22.
    Petersen S, Casellas R, Reina-San-Martin B, Chen HT, Difilippantonio MJ, Wilson PC, Hanitsch L, Celeste A, Muramatsu M, Pilch DR, Redon C, Ried T, Bonner WM, Honjo T, Nussenzweig MC, Nussenzweig A (2001) AID is required to initiate Nbs1/gamma-H2AX focus formation and mutations at sites of class switching. Nature 414(6864):660–665CrossRefGoogle Scholar
  23. 23.
    Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J (2014) Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 122:1–57.  https://doi.org/10.1016/b978-0-12-800267-4.00001-8CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Battey J, Moulding C, Taub R, Murphy W, Stewart T, Potter H, Lenoir G, Leder P (1983) The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34(3):779–787CrossRefGoogle Scholar
  25. 25.
    Neri A, Barriga F, Knowles DM, Magrath IT, Dalla-Favera R (1988) Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A 85(8):2748–2752CrossRefGoogle Scholar
  26. 26.
    Shiramizu B, Barriga F, Neequaye J, Jafri A, Dalla-Favera R, Neri A, Guttierez M, Levine P, Magrath I (1991) Patterns of chromosomal breakpoint locations in Burkitt’s lymphoma: relevance to geography and Epstein-Barr virus association. Blood 77(7):1516–1526CrossRefGoogle Scholar
  27. 27.
    Akasaka H, Akasaka T, Kurata M, Ueda C, Shimizu A, Uchiyama T, Ohno H (2000) Molecular anatomy of BCL6 translocations revealed by long-distance polymerase chain reaction-based assays. Cancer Res 60(9):2335–2341PubMedGoogle Scholar
  28. 28.
    Offit K, Louie DC, Parsa NZ, Roy P, Leung D, Lo Coco F, Zelenetz A, Dalla-Favera R, Chaganti RS (1995) BCL6 gene rearrangement and other cytogenetic abnormalities in diffuse large cell lymphoma. Leuk Lymphoma 20(1-2):85–89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Wenjun Wu
    • 1
  • Zhihui Xiao
    • 1
  • Deon Buritis
    • 2
  • Vladimir Poltoratsky
    • 1
    • 2
    Email author
  1. 1.Department of Pharmaceutical SciencesSt. John’s UniversityQueensUSA
  2. 2.Department of Biological SciencesSt. John’s UniversityQueensUSA

Personalised recommendations