Skip to main content

Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2105))

Abstract

Because of the important roles noncoding RNAs play in gene expression, their sequence-specific recognition is important for both fundamental science and the pharmaceutical industry. However, most noncoding RNAs fold in complex helical structures that are challenging problems for molecular recognition. Herein, we describe a method for sequence-specific recognition of double-stranded RNA using peptide nucleic acids (PNAs) that form triple helices in the major grove of RNA under physiologically relevant conditions. We also outline methods for solid-phase conjugation of PNA with cell-penetrating peptides and fluorescent dyes. Protocols for PNA preparation and binding studies using isothermal titration calorimetry are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  PubMed  Google Scholar 

  2. Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  CAS  PubMed  Google Scholar 

  3. Yoon J-H, Abdelmohsen K, Gorospe M (2013) Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425:3723–3730

    Article  CAS  PubMed  Google Scholar 

  4. Gorski SA, Vogel J, Doudna JA (2017) RNA-based recognition and targeting: sowing the seeds of specificity. Nat Rev Mol Cell Biol 18:215–228

    Article  CAS  PubMed  Google Scholar 

  5. Consortium IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  CAS  Google Scholar 

  6. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roeder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L-H, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amitai G, Sorek R (2016) CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 14:67–76

    Article  CAS  PubMed  Google Scholar 

  8. Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55–61

    Article  CAS  PubMed  Google Scholar 

  9. Wright AV, Nunez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  11. Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc 114:1895–1897

    Article  CAS  Google Scholar 

  12. Chow CS, Bogdan FM (1997) A structural basis for RNA-ligand interactions. Chem Rev 97:1489–1513

    Article  CAS  PubMed  Google Scholar 

  13. Sucheck SJ, Wong CH (2000) RNA as a target for small molecules. Curr Opin Chem Biol 4:678–686

    Article  CAS  PubMed  Google Scholar 

  14. Thomas JR, Hergenrother PJ (2008) Targeting RNA with small molecules. Chem Rev 108:1171–1224

    Article  CAS  PubMed  Google Scholar 

  15. Guan L, Disney MD (2012) Recent advances in developing small molecules targeting RNA. ACS Chem Biol 7:73–86

    Article  CAS  PubMed  Google Scholar 

  16. Shortridge MD, Varani G (2015) Structure based approaches for targeting non-coding RNAs with small molecules. Curr Opin Struct Biol 30:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Velagapudi SP, Vummidi BR, Disney MD (2015) Small molecule chemical probes of microRNA function. Curr Opin Chem Biol 24:97–103

    Article  CAS  PubMed  Google Scholar 

  18. Childs-Disney JL, Disney MD (2016) Approaches to validate and manipulate RNA targets with small molecules in cells. Annu Rev Pharmacol Toxicol 56:123–140

    Article  CAS  PubMed  Google Scholar 

  19. Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L, Galgoci AM, Malinverni JC, Mayhood T, Villafania A, Nahvi A, Murgolo N, Barbieri CM, Mann PA, Carr D, Xia E, Zuck P, Riley D, Painter RE, Walker SS, Sherborne B, de Jesus R, Pan W, Plotkin MA, Wu J, Rindgen D, Cummings J, Garlisi CG, Zhang R, Sheth PR, Gill CJ, Tang H, Roemer T (2015) Selective small-molecule inhibition of an RNA structural element. Nature 526:672–677

    Article  CAS  PubMed  Google Scholar 

  20. Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X, Van Hoosear M, Shin Y, Chin DN, Keller CG, Beibel M, Renaud NA, Smith TM, Salcius M, Shi X, Hild M, Servais R, Jain M, Deng L, Bullock C, McLellan M, Schuierer S, Murphy L, Blommers MJJ, Blaustein C, Berenshteyn F, Lacoste A, Thomas JR, Roma G, Michaud GA, Tseng BS, Porter JA, Myer VE, Tallarico JA, Hamann LG, Curtis D, Fishman MC, Dietrich WF, Dales NA, Sivasankaran R (2015) SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol 11:511–517

    Article  CAS  PubMed  Google Scholar 

  21. Barros SA, Chenoweth DM (2014) Recognition of nucleic acid junctions using triptycene-based molecules. Angew Chem Int Ed 53:13746–13750

    Article  CAS  Google Scholar 

  22. Wong C-H, Nguyen L, Peh J, Luu LM, Sanchez JS, Richardson SL, Tuccinardi T, Tsoi H, Chan WY, Chan HYE, Baranger AM, Hergenrother PJ, Zimmerman SC (2014) Targeting toxic RNAs that cause myotonic dystrophy type 1 (DM1) with a bisamidinium inhibitor. J Am Chem Soc 136:6355–6361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nguyen L, Luu LM, Peng S, Serrano JF, Chan HYE, Zimmerman SC (2015) Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1. J Am Chem Soc 137:14180–14189

    Article  CAS  PubMed  Google Scholar 

  24. Arambula JF, Ramisetty SR, Baranger AM, Zimmerman SC (2009) A simple ligand that selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding. Proc Natl Acad Sci U S A 106:16068–16073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gareiss PC, Sobczak K, McNaughton BR, Palde PB, Thornton CA, Miller BL (2008) Dynamic combinatorial selection of molecules capable of inhibiting the (CUG) repeat RNA-MBNL1 interaction in vitro: discovery of lead compounds targeting myotonic dystrophy (DM1). J Am Chem Soc 130:16254–16261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rzuczek SG, Colgan LA, Nakai Y, Cameron MD, Furling D, Yasuda R, Disney MD (2017) Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat Chem Biol 13:188–193

    Article  CAS  PubMed  Google Scholar 

  27. Davidson A, Leeper TC, Athanassiou Z, Patora-Komisarska K, Karn J, Robinson JA, Varani G (2009) Simultaneous recognition of HIV-1 TAR RNA bulge and loop sequences by cyclic peptide mimics of Tat protein. Proc Natl Acad Sci U S A 106:11931–11936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abulwerdi FA, Shortridge MD, Sztuba-Solinska J, Wilson R, Le Grice SFJ, Varani G, Schneekloth JS (2016) Development of small molecules with a noncanonical binding mode to HIV-1 trans activation response (TAR) RNA. J Med Chem 59:11148–11160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hilimire TA, Chamberlain JM, Anokhina V, Bennett RP, Swart O, Myers JR, Ashton JM, Stewart RA, Featherston AL, Gates K, Helms ED, Smith HC, Dewhurst S, Miller BL (2017) HIV-1 frameshift RNA-targeted triazoles inhibit propagation of replication-competent and multi-drug-resistant HIV in human cells. ACS Chem Biol 12:1674–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McNaughton BR, Gareiss PC, Miller BL (2007) Identification of a selective small-molecule ligand for HIV-1 frameshift-inducing stem-loop RNA from an 11,325 member resin bound dynamic combinatorial library. J Am Chem Soc 129:11306–11307

    Article  CAS  PubMed  Google Scholar 

  31. Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A (2008) Small-molecule inhibitors of microRNA miR-21 function. Angew Chem Int Ed Engl 47:7482–7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Young DD, Connelly CM, Grohmann C, Deiters A (2010) Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132:7976–7981

    Article  CAS  PubMed  Google Scholar 

  33. Shortridge MD, Walker MJ, Pavelitz T, Chen Y, Yang W, Varani G (2017) A macrocyclic peptide ligand binds the oncogenic microRNA-21 precursor and suppresses dicer processing. ACS Chem Biol 12:1611–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Y, Yang F, Zubovic L, Pavelitz T, Yang W, Godin K, Walker M, Zheng S, Macchi P, Varani G (2016) Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins. Nat Chem Biol 12:717–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Velagapudi SP, Cameron MD, Haga CL, Rosenberg LH, Lafitte M, Duckett DR, Phinney DG, Disney MD (2016) Design of a small molecule against an oncogenic noncoding RNA. Proc Natl Acad Sci U S A 113:5898–5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Costales MG, Haga CL, Velagapudi SP, Childs-Disney JL, Phinney DG, Disney MD (2017) Small molecule inhibition of microRNA-210 reprograms an oncogenic hypoxic circuit. J Am Chem Soc 139:3446–3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Devi G, Zhou Y, Zhong Z, Toh D-FK, Chen G (2015) RNA triplexes: from structural principles to biological and biotech applications. Wiley Interdiscip Rev RNA 6:111–128

    Article  CAS  PubMed  Google Scholar 

  38. Li M, Zengeya T, Rozners E (2010) Short peptide nucleic acids bind strongly to homopurine tract of double helical RNA at pH 5.5. J Am Chem Soc 132:8676–8681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zengeya T, Gupta P, Rozners E (2012) Triple helical recognition of RNA using 2-aminopyridine-modified PNA at physiologically relevant conditions. Angew Chem Int Ed Engl 51:12593–12596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muse O, Zengeya T, Mwaura J, Hnedzko D, McGee DW, Grewer CT, Rozners E (2013) Sequence selective recognition of double-stranded RNA at physiologically relevant conditions using PNA-peptide conjugates. ACS Chem Biol 8:1683–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hnedzko D, McGee DW, Karamitas YA, Rozners E (2017) Sequence-selective recognition of double-stranded RNA and enhanced cellular uptake of cationic nucleobase and backbone-modified peptide nucleic acids. RNA 23:58–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Endoh T, Hnedzko D, Rozners E, Sugimoto N (2016) Nucleobase-modified PNA suppresses translation by forming a triple helix with a hairpin structure in mRNA in vitro and in cells. Angew Chem Int Ed Engl 55:899–903

    Article  CAS  PubMed  Google Scholar 

  43. Hildbrand S, Leumann C (1996) Enhancing DNA triple helix stability at neutral pH by the use of oligonucleotides containing a more basic deoxycytidine analog. Angew Chem Int Ed Engl 35:1968–1970

    Article  CAS  Google Scholar 

  44. Hildbrand S, Blaser A, Parel SP, Leumann CJ (1997) 5-Substituted 2-aminopyridine C-nucleosides as protonated cytidine equivalents: increasing efficiency and specificity in DNA triple-helix formation. J Am Chem Soc 119:5499–5511

    Article  CAS  Google Scholar 

  45. Bates PJ, Laughton CA, Jenkins TC, Capaldi DC, Roselt PD, Reese CB, Neidle S (1996) Efficient triple helix formation by oligodeoxyribonucleotides containing α- or β-2-amino-5-(2-deoxy-D-ribofuranosyl) pyridine residues. Nucleic Acids Res 24:4176–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cassidy SA, Slickers P, Trent JO, Capaldi DC, Roselt PD, Reese CB, Neidle S, Fox KR (1997) Recognition of GC base pairs by triplex forming oligonucleotides containing nucleosides derived from 2-aminopyridine. Nucleic Acids Res 25:4891–4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rusling DA, Powers VEC, Ranasinghe RT, Wang Y, Osborne SD, Brown T, Fox KR (2005) Four base recognition by triplex-forming oligonucleotides at physiological pH. Nucleic Acids Res 33:3025–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lou C, Shelbourne M, Fox KR, Brown T (2011) 2′-Amino-ethoxy-2-amino-3-methylpyridine in triplex-forming oligonucleotides: high affinity, selectivity and resistance to enzymatic degradation. Chemistry 17:14851–14856. S14851/14851-S14851/14827.

    Article  CAS  PubMed  Google Scholar 

  49. Lou C, Xiao Q, Tailor RR, Ben Gaied N, Gale N, Light ME, Fox KR, Brown T (2011) 2′-Substituted 2-amino-3-methylpyridine ribonucleosides in triplex-forming oligonucleotides: triplex stability is determined by chemical environment. Med Chem Commun 2:550–558

    Article  CAS  Google Scholar 

  50. Hnedzko D, McGee DW, Rozners E (2016) Synthesis and properties of peptide nucleic acid labeled at the N-terminus with HiLyte Fluor 488 fluorescent dye. Bioorg Med Chem 24:4199–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Buchini S, Leumann CJ (2004) Stable and selective recognition of three base pairs in the parallel triple-helical DNA binding motif. Angew Chem Int Ed Engl 43:3925–3928

    Article  CAS  PubMed  Google Scholar 

  52. Ranasinghe RT, Rusling DA, Powers VEC, Fox KR, Brown T (2005) Recognition of CG inversions in DNA triple helices by methylated 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues. Chem Commun (Camb) (20):2555–2557

    Google Scholar 

  53. Eldrup AB, Dahl O, Nielsen PE (1997) A novel peptide nucleic acid monomer for recognition of thymine in triple-helix structures. J Am Chem Soc 119:11116–11117

    Article  CAS  Google Scholar 

  54. Gupta P, Zengeya T, Rozners E (2011) Triple helical recognition of pyrimidine inversions in polypurine tracts of RNA by nucleobase-modified PNA. Chem Commun 47:11125–11127

    Article  CAS  Google Scholar 

  55. Kim KT, Chang D, Winssinger N (2018) Double-stranded RNA-specific templated reaction with triplex forming PNA. Helv Chim Acta 101:e1700295

    Article  CAS  Google Scholar 

  56. Kotikam V, Kennedy SD, MacKay JA, Rozners E (2019) Synthetic, Structural, and RNA Binding Studies on 2‐Aminopyridine‐Modified Triplex‐Forming Peptide Nucleic Acids. Chemistry – A European Journal 25(17):4367–4372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM071461 (to E.R.) and NSF grants CHE-1406433 and CHE-1708761 (to E.R.) and CHE-1708699 (to J.A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eriks Rozners .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brodyagin, N., Hnedzko, D., MacKay, J.A., Rozners, E. (2020). Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA. In: Nielsen, P. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 2105. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0243-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0243-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0242-3

  • Online ISBN: 978-1-0716-0243-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics