Skip to main content

Methods for Target Enrichment Sequencing via Probe Capture in Legumes

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2107))

Abstract

Target enrichment sequencing (TES) is a powerful approach to deep-sequencing the exome or genomic regions of interest with great depth. Although successfully and widely adopted in many plant species, TES is currently applied for genotyping of only a couple legume species. Here we describe an in-solution probe capture based method for application of TES in legumes. The topics cover probe design, library preparation, probe hybridization, as well as bioinformatic analysis for evaluation of target capture efficiency and identifying single nucleotide polymorphisms using generated sequencing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178

    Article  CAS  PubMed  Google Scholar 

  2. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  3. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhatia D, Wing R, Singh K (2013) Genotyping by sequencing, its implications and benefits. Crop Improv 40:101–111

    Google Scholar 

  8. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499

    Article  CAS  PubMed  Google Scholar 

  9. Van Orsouw NJ, Hogers RC, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, van der Poel H, Van Oeveren J, Verstegen H (2007) Complexity reduction of polymorphic sequences (CRoPS™): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2:e1172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Van Tassell CP, Smith TP, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247

    Article  PubMed  CAS  Google Scholar 

  11. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau É, Laroche J, Larose S, Jean M (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8:e54603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111

    Article  CAS  PubMed  Google Scholar 

  16. Mertes F, ElSharawy A, Sauer S, van Helvoort JM, Van Der Zaag P, Franke A, Nilsson M, Lehrach H, Brookes AJ (2011) Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genomics 10:374–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  18. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203

    Article  CAS  PubMed  Google Scholar 

  19. Wang DG, Fan J-B, Siao C-J, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082

    Article  CAS  PubMed  Google Scholar 

  20. Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, Kotsopoulos SK, Samuels ML, Hutchison JB, Larson JW (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27:1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088

    Article  CAS  PubMed  Google Scholar 

  22. Porreca GJ, Zhang K, Li JB, Xie B, Austin D, Vassallo SL, LeProust EM, Peck BJ, Emig CJ, Dahl F (2007) Multiplex amplification of large sets of human exons. Nat Methods 4:931

    Article  CAS  PubMed  Google Scholar 

  23. Turner EH, Lee C, Ng SB, Nickerson DA, Shendure J (2009) Massively parallel exon capture and library-free resequencing across 16 genomes. Nat Methods 6:315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4:907

    Article  CAS  PubMed  Google Scholar 

  25. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ballester LY, Luthra R, Kanagal-Shamanna R, Singh RR (2016) Advances in clinical next-generation sequencing: target enrichment and sequencing technologies. Expert Rev Mol Diagn 16:357–372

    Article  CAS  PubMed  Google Scholar 

  27. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, Butte AJ, Snyder M (2011) Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 29:908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024

    Article  CAS  PubMed  Google Scholar 

  30. Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hübner S, Korol A, David M, Reiter E, Riehl S (2016) Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet 48:1089

    Article  CAS  PubMed  Google Scholar 

  31. Grabowski PP, Evans J, Daum C, Deshpande S, Barry KW, Kennedy M, Ramstein G, Kaeppler SM, Buell CR, Jiang Y (2017) Genome—wide associations with flowering time in switchgrass using exome—capture sequencing data. New Phytol 213:154–169

    Article  CAS  PubMed  Google Scholar 

  32. Peng Z, Fan W, Wang L, Paudel D, Leventini D, Tillman BL, Wang J (2017) Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences. Mol Genet Genomics 292:955–965

    Article  CAS  PubMed  Google Scholar 

  33. Gasc C, Peyret P (2018) Hybridization capture reveals microbial diversity missed using current profiling methods. Microbiome 6:61

    Article  PubMed  PubMed Central  Google Scholar 

  34. McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT (2013) A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS One 8:e54848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaur P, Gaikwad K (2017) From genomes to GENE-omes: exome sequencing concept and applications in crop improvement. Front Plant Sci 8:2164

    Article  PubMed  PubMed Central  Google Scholar 

  36. Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M (2015) Exome sequencing: current and future perspectives. G3 Genomes Genet 5:1543–1550

    Google Scholar 

  37. Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    Article  CAS  PubMed  Google Scholar 

  38. Weitemier K, Straub SC, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston A (2014) Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl Plant Sci 2:1400042

    Article  Google Scholar 

  39. Comer JR, Zomlefer WB, Barrett CF, Davis JI, Stevenson DW, Heyduk K, JH L‐M (2015) Resolving relationships within the palm subfamily Arecoideae (Arecaceae) using plastid sequences derived from next-generation sequencing. Am J Bot 102:888–899

    Article  CAS  PubMed  Google Scholar 

  40. Muraya MM, Schmutzer T, Ulpinnis C, Scholz U, Altmann T (2015) Targeted sequencing reveals large-scale sequence polymorphism in maize candidate genes for biomass production and composition. PLoS One 10:e0132120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Saintenac C, Jiang D, Akhunov ED (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12(9):R88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    Article  CAS  PubMed  Google Scholar 

  43. Wendler N, Mascher M, Nöh C, Himmelbach A, Scholz U, Ruge‐Wehling B, Stein N (2014) Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol J 12:1122–1131

    Article  CAS  PubMed  Google Scholar 

  44. Neves LG, Davis JM, Barbazuk WB, Kirst M (2013) Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J 75:146–156

    Article  CAS  PubMed  Google Scholar 

  45. Galvão VC, Nordström KJ, Lanz C, Sulz P, Mathieu J, Posé D, Schmid M, Weigel D, Schneeberger K (2012) Synteny-based mapping-by-sequencing enabled by targeted enrichment. Plant J 71:517–526

    PubMed  Google Scholar 

  46. Song J, Yang X, Resende MF Jr, Neves LG, Todd J, Zhang J, Comstock JC, Wang J (2016) Natural allelic variations in highly polyploidy Saccharum complex. Front Plant Sci 7:804

    PubMed  PubMed Central  Google Scholar 

  47. Yang X, Song J, Todd J, Peng Z, Paudel D, Luo Z, Ma X, You Q, Hanson E, Zhao Z (2019) Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.), a ‘sweet’crop with ‘bitter’genomes. Plant Biotechnol J 17:488–498

    Article  CAS  PubMed  Google Scholar 

  48. Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CP (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol 155:645–655

    Article  CAS  PubMed  Google Scholar 

  49. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  50. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  52. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013:1303.3997

    Google Scholar 

  54. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pruitt KD, Tatusova T, Maglott DR (2006) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Florida Peanut Producers Association and National Peanut Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peng, Z., Paudel, D., Wang, L., Luo, Z., You, Q., Wang, J. (2020). Methods for Target Enrichment Sequencing via Probe Capture in Legumes. In: Jain, M., Garg, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 2107. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0235-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0235-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0234-8

  • Online ISBN: 978-1-0716-0235-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics