Advertisement

FREMSA: A Method That Provides Direct Evidence of the Interaction between microRNA and mRNA

  • Dianke YuEmail author
  • Si Chen
  • Dongying Li
  • Bridgett Knox
  • Lei Guo
  • Baitang Ning
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2102)

Abstract

microRNAs (miRNAs) modulate the expression of enzymes responsible for activation or detoxification of xenobiotics and toxicants. miRNAs are dysregulated in response to environmental exposure and have been implicated in toxicological events. Many in vivo and in vitro experimental approaches have been employed to delineate the mechanisms by which miRNAs regulate target genes; however, all these methods provide only indirect evidence for the interaction between miRNAs and their counterpart mRNA molecules. In this chapter, we describe a novel approach—a fluorescent-based RNA electrophoretic mobility shift assay (FREMSA) that is a sensitive and time-saving method, with a high specificity, to visualize the interactions among miRNAs, mRNAs, and proteins, as direct evidence of mRNA/miRNA complex formation.

Key words

Fluorescent-based RNA electrophoretic mobility shift assay miRNA target prediction miRNA–RNA interaction 

Notes

Acknowledgment

The information in these materials is not a formal dissemination of the U.S. Food and Drug Administration.

References

  1. 1.
    Fan X, Kurgan L (2015) Comprehensive overview and assessment of computational prediction of microRNA targets in animals. Brief Bioinform 16(5):780–794.  https://doi.org/10.1093/bib/bbu044CrossRefPubMedGoogle Scholar
  2. 2.
    Li Y, Zhang Z (2015) Computational biology in microRNA. Wiley Interdiscip Rev RNA 6(4):435–452.  https://doi.org/10.1002/wrna.1286CrossRefPubMedGoogle Scholar
  3. 3.
    Pinzon N, Li B, Martinez L, Sergeeva A, Presumey J, Apparailly F, Seitz H (2017) microRNA target prediction programs predict many false positives. Genome Res 27(2):234–245.  https://doi.org/10.1101/gr.205146.116CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174.  https://doi.org/10.1038/nsmb.1921CrossRefPubMedGoogle Scholar
  5. 5.
    Chen Y, Zeng L, Wang Y, Tolleson WH, Knox B, Chen S, Ren Z, Guo L, Mei N, Qian F, Huang K, Liu D, Tong W, Yu D, Ning B (2017) The expression, induction and pharmacological activity of CYP1A2 are post-transcriptionally regulated by microRNA hsa-miR-132-5p. Biochem Pharmacol 145:178–191.  https://doi.org/10.1016/j.bcp.2017.08.012CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jin Y, Yu D, Tolleson WH, Knox B, Wang Y, Chen S, Ren Z, Deng H, Guo Y, Ning B (2016) MicroRNA hsa-miR-25-3p suppresses the expression and drug induction of CYP2B6 in human hepatocytes. Biochem Pharmacol 113:88–96.  https://doi.org/10.1016/j.bcp.2016.06.007CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mezquita-Pla J (2018) Gordon H. Dixon's trace in my personal career and the quantic jump experienced in regulatory information. Syst Biol Reprod Med 64(6):448–468.  https://doi.org/10.1080/19396368.2018.1503752CrossRefPubMedGoogle Scholar
  8. 8.
    Yu D, Green B, Marrone A, Guo Y, Kadlubar S, Lin D, Fuscoe J, Pogribny I, Ning B (2015) Suppression of CYP2C9 by microRNA hsa-miR-128-3p in human liver cells and association with hepatocellular carcinoma. Sci Rep 5:8534.  https://doi.org/10.1038/srep08534CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yu D, Green B, Tolleson WH, Jin Y, Mei N, Guo Y, Deng H, Pogribny I, Ning B (2015) MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem Pharmacol.  https://doi.org/10.1016/j.bcp.2015.08.094CrossRefGoogle Scholar
  10. 10.
    Yu D, Tolleson WH, Knox B, Jin Y, Guo L, Guo Y, Kadlubar SA, Ning B (2015) Modulation of ALDH5A1 and SLC22A7 by microRNA hsa-miR-29a-3p in human liver cells. Biochem Pharmacol.  https://doi.org/10.1016/j.bcp.2015.09.020CrossRefGoogle Scholar
  11. 11.
    Yu D, Wu L, Gill P, Tolleson WH, Chen S, Sun J, Knox B, Jin Y, Xiao W, Hong H, Wang Y, Ren Z, Guo L, Mei N, Guo Y, Yang X, Shi L, Chen Y, Zeng L, Dreval K, Tryndyak V, Pogribny I, Fang H, Shi T, McCullough S, Bhattacharyya S, Schnackenberg L, Mattes W, Beger RD, James L, Tong W, Ning B (2018) Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol 92(2):845–858.  https://doi.org/10.1007/s00204-017-2090-yCrossRefPubMedGoogle Scholar
  12. 12.
    Zeng L, Chen Y, Wang Y, Yu LR, Knox B, Chen J, Shi T, Chen S, Ren Z, Guo L, Wu Y, Liu D, Huang K, Tong W, Yu D, Ning B (2017) MicroRNA hsa-miR-370-3p suppresses the expression and induction of CYP2D6 by facilitating mRNA degradation. Biochem Pharmacol 140:139–149.  https://doi.org/10.1016/j.bcp.2017.05.018CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hsu JB, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD (2011) miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinf 12:300.  https://doi.org/10.1186/1471-2105-12-300CrossRefGoogle Scholar
  14. 14.
    Henry VJ, Bandrowski AE, Pepin AS, Gonzalez BJ, Desfeux A (2014) OMICtools: an informative directory for multi-omic data analysis. Database (Oxford).  https://doi.org/10.1093/database/bau069CrossRefGoogle Scholar
  15. 15.
    Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server):W451–W454.  https://doi.org/10.1093/nar/gkl243CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Dianke Yu
    • 1
    • 2
    Email author
  • Si Chen
    • 1
  • Dongying Li
    • 1
  • Bridgett Knox
    • 1
  • Lei Guo
    • 1
  • Baitang Ning
    • 1
  1. 1.National Center for Toxicological Research, US Food and Drug AdministrationJeffersonUSA
  2. 2.School of Public Health, Qingdao UniversityQingdaoChina

Personalised recommendations