Advertisement

Immobilization of Enzymes on Supports Activated with Glutaraldehyde: A Very Simple Immobilization Protocol

  • Fernando López-Gallego
  • Jose M. GuisanEmail author
  • Lorena Betancor
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

In this chapter, we describe different approaches for the utilization of glutaraldehyde in protein immobilization. First, we focus on the covalent attachment of proteins to glutaraldehyde-activated matrixes. We describe conditions for the synthesis of such supports and provide an example of the immobilization and stabilization of a fructosyltransferase. We also describe how glutaraldehyde may be used for the cross-linking of protein–protein aggregates and protein adsorbed onto amino-activated matrixes. In these cases, glutaraldehyde bridges either two lysine groups from different protein molecules or a lysine from the protein structure and an amine group from the support. Examples of cross-linking are given for the immobilization of a d-amino acid oxidase on different amino-activated supports.

Key words

Glutaraldehyde Protein immobilization Cross-linking Protein stabilization 

References

  1. 1.
    El-Aassar MR (2013) Functionalized electrospun nanofibers from poly (AN-co-MMA) for enzyme immobilization. J Mol Catal B Enzymatic 85–86:140–148CrossRefGoogle Scholar
  2. 2.
    Magnan E, Catarino I, Paolucci-Jeanjean D, Preziosi-Belloy L, Belleville MP (2004) Immobilization of lipase on a ceramic membrane: activity and stability. J Membr Sci 241:161–166CrossRefGoogle Scholar
  3. 3.
    Mohy Eldin MS, Elaassar MR, Elzatahry AA, Al-Sabah MMB, Hassan EA (2012) Covalent immobilization of β-galactosidase onto amino-functionalized PVC microspheres. J Appl Polym Sci 125:1724–1735CrossRefGoogle Scholar
  4. 4.
    Zhou QZK, Dong CX (2001) Immobilization of β-galactosidase on graphite surface by glutaraldehyde. J Food Eng 48:69–74CrossRefGoogle Scholar
  5. 5.
    Demarche P, Junghanns C, Mazy N, Agathos SN (2012) Design-of-experiment strategy for the formulation of laccase biocatalysts and their application to degrade bisphenol A. New Biotechnol 30:96–103CrossRefGoogle Scholar
  6. 6.
    D’Souza SF, Kubal BS (2002) A cloth strip bioreactor with immobilized glucoamylase. J Biochem Biophys Methods 51:151–159CrossRefGoogle Scholar
  7. 7.
    Hwang S, Lee KT, Park JW, Min BR, Haam S, Ahn IS, Jung JK (2004) Stability analysis of Bacillus stearothermophilus L1 lipase immobilized on surface-modified silica gels. Biochem Eng J 17:85–90CrossRefGoogle Scholar
  8. 8.
    Zimmermann YS, Shahgaldian P, Corvini PFX, Hommes G (2011) Sorption-assisted surface conjugation: a way to stabilize laccase enzyme. Appl Microbiol Biotechnol 92:169–178CrossRefGoogle Scholar
  9. 9.
    Betancor L, López-Gallego F, Hidalgo A, Alonso-Morales N, Mateo GD-OC, Fernández-Lafuente R, Guisán JM (2006) Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzym Microb Technol 39:877–882CrossRefGoogle Scholar
  10. 10.
    López-Gallego F, Betancor L, Hidalgo A, Alonso N, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2005) Preparation of a robust biocatalyst of D-amino acid oxidase on sepabeads supports using the glutaraldehyde crosslinking method. Enzym Microb Technol 37:750–756CrossRefGoogle Scholar
  11. 11.
    López-Gallego F, Betancor L, Mateo C, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, Guisán JM, Fernández-Lafuente R (2005) Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J Biotechnol 119:70–75CrossRefGoogle Scholar
  12. 12.
    Betancor L, López-Gallego F, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, Guisán JM, Fernández-Lafuente R (2006) Preparation of a very stable immobilized bio-catalyst of glucose oxidase from Aspergillus niger. J Biotechnol 121:284–289CrossRefGoogle Scholar
  13. 13.
    Fernandez-Lafuente R, Resell CM, Rodriguez V, Guisan JM (1995) Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzym Microb Technol 17:517–523CrossRefGoogle Scholar
  14. 14.
    Bayraktar H, Serilmez M, Karkaş T, Çelem EB, Önal S (2011) Immobilization and stabilization of α-galactosidase on Sepabeads EC-EA and EC-HA. Int J Biol Macromol 49:855–860CrossRefGoogle Scholar
  15. 15.
    Gouda MK, Abdel-Naby MA (2002) Catalytic properties of the immobilized Aspergillus tamarii xylanase. Microbiol Res 157:275–281CrossRefGoogle Scholar
  16. 16.
    Chae HJ, Kim EY, In MJ (2000) Improved immobilization yields by addition of protecting agents in glutaraldehyde-induced immobilization of protease. J Biosci Bioeng 89:377–379CrossRefGoogle Scholar
  17. 17.
    Guisán JM (1988) Aldehyde-agarose gels as activated supports for immobilizationstabilization of enzymes. Enzym Microb Technol 10:375–373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Fernando López-Gallego
    • 2
    • 3
  • Jose M. Guisan
    • 1
    Email author
  • Lorena Betancor
    • 1
  1. 1.Institute of Catalysis, CSIC, Campus UAM-CantoblancoMadridSpain
  2. 2.Department of BiocatalysisInstitute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAMMadridSpain
  3. 3.Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de ZaragozaZaragozaSpain

Personalised recommendations