Advertisement

Multi-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Stabilization of Industrial Enzymes

  • Fernando López-Gallego
  • Gloria Fernandez-Lorente
  • Javier Rocha-Martín
  • Juan M. Bolivar
  • Cesar Mateo
  • Jose M. GuisanEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

Stabilization of enzymes via immobilization techniques is a valuable approach in order to convert a necessary protocol (immobilization) into a very interesting tool to improve key enzyme properties (stabilization). Multipoint covalent attachment of each immobilized enzyme molecule may promote a very interesting stabilizing effect. The relative distances among all enzyme residues involved in immobilization have to remain unaltered during any conformational change induced by any distorting agent. Amino groups are very interesting nucleophiles placed on protein surfaces. The immobilization of enzyme through the region having the highest amount of amino groups (Lys residues) is key for a successful stabilization. Glyoxyl groups are small aliphatic aldehydes that form very unstable Schiff’s bases with amino groups, and they do not seem to be useful for enzyme immobilization at neutral pH. However, under alkaline conditions, glyoxyl supports are able to immobilize enzymes via a first multipoint covalent immobilization through the region having the highest amount of lysine groups. Activation of supports with a high surface density of glyoxyl groups and the performance of very intense enzyme–support multipoint covalent attachments are here described.

Key words

Enzyme stabilization Over-stabilization of aminated enzymes Variables that control stabilization 

References

  1. 1.
    Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34CrossRefGoogle Scholar
  2. 2.
    Wong SS, Wong LJ (1992) Chemical cross-linking and the stabilization of proteins and enzymes. Enzym Microb Technol 14:866–874CrossRefGoogle Scholar
  3. 3.
    Klibanov AM (1983) Immobilized enzymes against termal inactivation. Adv Appl Microbiol 29:1–28CrossRefGoogle Scholar
  4. 4.
    Alvaro G, Fernández-Lafuente R, Blanco RM, Guisán JM (1990) Immobilization- stabilization of penicillin acylase from E. coli. Appl Biochem Biotechnol 26:181–195CrossRefGoogle Scholar
  5. 5.
    Guisán JM, Alvaro G, Fernández-Lafuente R, Rosell CM, Garcia-Lopez JL, Tagliatti A (1993) Stabilization of a heterodymeric enzyme by multi-point covalent immobilization: penicillin G acylase from Kluyvera citrophila. Biotechnol Bioeng 42:455–464CrossRefGoogle Scholar
  6. 6.
    Blanco RM, Guisán JM (1988) Protecting effect of competitive inhibitors during very intense insolubilized enzyme-activated support multipoint attachments: trypsin (amine)-agarose (aldehyde) system. Enzym Microb Technol 10:227–232CrossRefGoogle Scholar
  7. 7.
    Guisán JM, Bastida A, Cuesta AC, Fernández- Lafuente R, Rosell CM (1991) Immobilization-stabilization of chymotrypsin by covalent attachment to aldehyde agarose gels. Biotechnol Bioeng 39:75–84Google Scholar
  8. 8.
    Tardioli PW, Pedroche J, Giordano RL, Fernández-Lafuente R, Guisán JM (2003) Hydrolysis of proteins by immobilized-stabilized alcalase®-glyoxyl agarose. Biotechnol Prog 19:352–360CrossRefGoogle Scholar
  9. 9.
    Pedroche J, Yust MM, Girón-Calle J, Vioque J, Alaiz M, Mateo C, Guisán JM, Millán F (2002) Stabilization-immobilization of carboxypeptidase to aldehyde-agarose gels. A practical example in the hydrolysis of casein. Enzym Microb Technol 31:711–718CrossRefGoogle Scholar
  10. 10.
    Tardioli PW, Fernández-Lafuente R, Guisán JM, Giordano RLC (2003) Design of new immobilized-stabilized carboxypeptidase a derivative for production of aromatic free hydrolysates of proteins. Biotechnol Prog 19:565–574CrossRefGoogle Scholar
  11. 11.
    Bes T, Gomez-Moreno C, Guisán JM, Fernández-Lafuente R (1995) Selective enzy-metic oxidations: stabilization by multipoint covalent attachment of ferredoxin NAD- reductasa: an interesting cofactor recycling enzyme. J Mol Catal 98:161–169CrossRefGoogle Scholar
  12. 12.
    Guisán JM, Polo E, Agudo J, Romero MD, Alvaro G, Guerra MJ (1997) Immobilization-stabilization of thermolysin onto activated agarose gels. Biocatal Biotransformation 15:159–173CrossRefGoogle Scholar
  13. 13.
    Betancor L, Hidalgo A, Fernández-Lorente G, Mateo C, Rodríguez V, Fuentes M, Fernández-Lafuente R, Guisán JM (2003) The use of physicochemical tools to solve enzyme stability problems alters the choice of the optimal enzyme: stabilization of D-aminoacid oxidase. Biotechnol Prog 19:784–788CrossRefGoogle Scholar
  14. 14.
    Betancor L, Hidalgo A, Fernández-Lorente G, Mateo C, Rodríguez V, Fuentes M, Fernández-Lafuente R, Guisán JM (2003) Preparation of a stable biocatalyst of bovine liver catalase. Biotechnol Prog 19:763–767CrossRefGoogle Scholar
  15. 15.
    Hidalgo A, Betancor L, Lopez-Gallego F, Moreno R, Berenguer J, Fernández-Lafuente R, Guisán JM (2003) Preparation of a versatile biocatalyst of immobilized and stabilized catalase from Thermus thermophilus. Enzym Microb Technol 33:278–285CrossRefGoogle Scholar
  16. 16.
    Otero C, Ballesteros A, Guisán JM (1991) Immobilization/stabilization of lipase from Candida rugosa. Appl Biochem Biotechnol 19:163–175CrossRefGoogle Scholar
  17. 17.
    Suh C-W, Choi G-S, Lee E-K (2003) Enzymatic cleavage of fusion protein using immobilized urokinase covalently conjugated to glyoxyl-agarose. Biotechnol Appl Biochem 37:149–155CrossRefGoogle Scholar
  18. 18.
    Toogood HS, Taylor IN, Brown RC, Taylor SJC, McCague R, Littlechild JA (2002) Immobilisation of the thermostable L-aminoacylase from Thermus litotalis to generate a reusable industrial biocatalyst. Biocatal Biotransformation 20:241–249CrossRefGoogle Scholar
  19. 19.
    Ichikawa S, Takano K, Kuroiwa T, Hiruta O, Sato S, Mukataka S (2002) Immobilization and stabilization of chitosanase by multipoint attachment to agar gel support. J Biosci Bioeng 93:201–206CrossRefGoogle Scholar
  20. 20.
    Kuroiwa T, Ichikawa S, Sato S, Mukataka S (2003) Improvement of the yield of physiologically active oligosaccharides in continuous hydrolysis of chitosan using immobilized chitosanases. Biotechnol Bioeng 84:121–127CrossRefGoogle Scholar
  21. 21.
    Kuroiwa T, Ichikawa S, Sosaku H, Sato S, Mukataka S (2002) Factors affecting the composition of oligosaccharides produced in chitosan hydrolysis using immobilized chitosanases. Biotechnol Prog 18:969–974CrossRefGoogle Scholar
  22. 22.
    Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G, Palomo JM, Grazu V, Pessela BCC, Giacomini C, Irazoqui G, Villarino A, Ovsejevi K, Batista-Viera F, Fernandez-Lafuente R, Guisán JM (2005) Some special features of glyoxyl supports to immobilize proteins. Enzym Microb Technol 34:456–462CrossRefGoogle Scholar
  23. 23.
    Mateo C, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favouring additional multipoint covalent attachment. Enzym Microb Technol 26:509–515CrossRefGoogle Scholar
  24. 24.
    Blanco RM, Guisán JM (1988) Stabilization of enzymes by multipoint covalent attachment to agarose-aldehyde gels. Borohydride reduction of trypsin-agarose derivatives. Enzym Microb Technol 11:360–366CrossRefGoogle Scholar
  25. 25.
    Alvaro G, Blanco RM, Fernández-Lafuente R, Guisán JM (1990) Immobilization-stabilization of penicillin G acylase from E. Appl Biochem Biotechnol 26:210–214CrossRefGoogle Scholar
  26. 26.
    Guisán JM, Alvaro G, Fernández-Lafuente R, Guisán JM (1993) Stabilization of a heterodymeric enzyme by multi-point covalent immobilization: penicillin G acylase from Kluyvera citrophila. Biotechnol Bioeng 42:455–464CrossRefGoogle Scholar
  27. 27.
    Bes T, Gomez-Moreno C, Guisán JM, Fernández-Lafuente R (1995) Selective enzymetic oxidations: stabilization by multipoint covalent attachment of ferredoxin NAD-reductasa: an interesting cofactor recycling enzyme. J Mol Catal 98:161–169CrossRefGoogle Scholar
  28. 28.
    Fernández-Lafuente R, Cowan DA, Wood ANP (1995) Hyperstabilization of a thermophilic esterase by multipoint covalent attachment. Enzym Microb Technol 17(1995):366–372CrossRefGoogle Scholar
  29. 29.
    Mansur M, Garcia JL, Guisán JM, Garcia-Calvo E (1998) Cloning, expression and immobilization of glutamate racemase from Lactobacillus fermenti for the production of D-glutamate from L-glutamate. Biotechnol Lett 20:57–61CrossRefGoogle Scholar
  30. 30.
    Bolivar JM, Wilson L, Ferrarotti SA, Fernandez-Lafuente R, Guisan JM, Mateo C (2006) Stabilization of a formate dehydrogenase by covalent immobilization on highly activated glyoxyl-agarose supports. Biomacromolecules 7:669–673CrossRefGoogle Scholar
  31. 31.
    Bolivar JM, Wilson L, Ferrarotti SA, Guisán JM, Fernández-Lafuente R, Mateo C (2006) Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. J Biotechnol 125:85–94CrossRefGoogle Scholar
  32. 32.
    Abian O, Grazú V, Hermoso J, González R, García JL, Fernández-Lafuente R, Guisán JM (2004) Stabilization of penicillin G acylase from Escherichia coli: site-directed mutagenesis of the protein surface to increase multipoint covalent attachment. Appl Environ Microbiol 70:1249–1251CrossRefGoogle Scholar
  33. 33.
    López-Gallego F, Montes T, Fuentes M, Alonso N, Grazu V, Betancor L, Guisan JM (2005) Chemical increase of the amount of reactive groups on enzyme surface to improve its stabilization via multipoint covalent attachment. J Biotechnol 116:1–10CrossRefGoogle Scholar
  34. 34.
    Guisan JM (1988) Agarose-aldehyde gels as supports for immobilization-stabilization of enzymes. Enzym Microb Technol 10:375–382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Fernando López-Gallego
    • 1
    • 3
  • Gloria Fernandez-Lorente
    • 1
    • 2
  • Javier Rocha-Martín
    • 1
  • Juan M. Bolivar
    • 1
  • Cesar Mateo
    • 1
  • Jose M. Guisan
    • 1
    Email author
  1. 1.Department of BiocatalysisInstitute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAMMadridSpain
  2. 2.Department of Biotechnology and MicrobiologyInstitute of Food Science Research (CIAL), CSIC-UAM, Campus UAMMadridSpain
  3. 3.Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de ZaragozaZaragozaSpain

Personalised recommendations