Advertisement

Immobilization of Microalgae

  • Nirupama MallickEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

Several microalgae synthesize metabolites of great commercial interest. Microalgae also act as filters for wastewater N and P, heavy metals, and xenobiotic compounds. However, the cost-effective harvesting of microalgae is one of the major bottlenecks limiting the microalgal biomass applications. In this context, immobilization of algal cells has been proposed for circumventing the harvest problem as well as retaining the high-value algal biomass for further processing. In recent years, innovative approaches have been employed in the field of coimmobilization and microencapsulation, which have proved the superiority of immobilized cells over the free cells. Further, the development in the field of biosensor technology with immobilized microalgae presents an early warning device to monitor pollutants in natural waters. This chapter reviews the various applications of immobilized microalgae and addresses the specific methods concerning the production of coimmobilized beads and the protocol for construction of optical algal biosensors.

Key words

Coimmobilization Biosensor Bioreactor Heavy metals Microalgae N and P removal 

Notes

Acknowledgments

I would like to thank Mr. Laxuman Sharma and Mr. Akhilesh Kumar Singh for their kind technical assistance.

References

  1. 1.
    Lipkin Y (1985) Outdoor cultivation of sea vegetables. Plant Soil 89:159–183CrossRefGoogle Scholar
  2. 2.
    Avila M, Seguel M (1993) An overview of seaweed resources in Chile. J Appl Phycol 5:133–139CrossRefGoogle Scholar
  3. 3.
    Merrill JE (1993) Development of Nori markets in the Western World. J Appl Phycol 5:149–154CrossRefGoogle Scholar
  4. 4.
    Sahoo D, Tang X, Yarish C (2002) Porphyra- the economic seaweed as a new experimental system. Curr Sci 83:1313–1316Google Scholar
  5. 5.
    Martinez MR, Palacpac NQ, Guevarra HT, Boussiba S (1995) Production of indigenous nitrogen fixing blue-green algae in paddy fields of the Philippines. In: Thirakhupt V, Boonakijjinda V (eds) Mass cultures of Microalgae. Proceedings of the Research Seminar and Workshop, Silpakorn University, Thailand, November 18–23, 1991, pp 51–60Google Scholar
  6. 6.
    Borowitzka LJ, Borowitzka MA (1990) Commercial production of β- carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252Google Scholar
  7. 7.
    Belay A, Ota Y, Miyakawa K, Simamatsu H (1994) Production of high quality Spirulina at Earthrise Farms. In: Phang SM, Lee K, Borowitzka MM, Whitton BA (eds) Algal biotechnology in the Asia–Pacific Region. University of Malay Press, Kuala Lumpur, pp 92–102Google Scholar
  8. 8.
    Spoehr HA, Milner HW (1949) The chemical composition of Chlorella: effect of environmental conditions. Plant Physiol 24:120–129PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Laliberte G, Proulx D, De Pauw N, de la Noue J (1994) Algal technology in wastewater treatment. In: Rai LC, Gaur JP, Soeder CJ (eds) Algae and water pollution. E. Schweizerbart’sche Verlagsbuchhanlung, Stuttgart, Germany, pp 283–302Google Scholar
  10. 10.
    Cohen Z (1999) Chemicals from microalgae. Taylor & Francis Ltd, London, UK, p 419Google Scholar
  11. 11.
    Richmond A, Becker EW (1986) Technological aspects of mass cultivation—a general outline. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press Inc., Boca Raton, pp 245–263Google Scholar
  12. 12.
    Mohn FH (1988) Harvesting of microalgal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York, NY, pp 395–414Google Scholar
  13. 13.
    Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York, NY, pp 305–328Google Scholar
  14. 14.
    Bosma R, Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153CrossRefGoogle Scholar
  15. 15.
    Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390PubMedCrossRefGoogle Scholar
  16. 16.
    Brandenberger H, Widmer F (1998) A new multinozzle encapsulation/immobilization system to produce uniform beads of alginate. J Biotechnol 63:73–80CrossRefGoogle Scholar
  17. 17.
    de-Bashan LE, Hernnandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474PubMedCrossRefGoogle Scholar
  18. 18.
    Naessens M, Leclerc J-C, Tran-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol Environ Saf 46:181–185PubMedCrossRefGoogle Scholar
  19. 19.
    Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51:206–209PubMedCrossRefGoogle Scholar
  20. 20.
    Vedrine C, Leclerc J-C, Durrieu C, Tran-Minh C (2003) Optical whole- cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chouteau C, Dzyadevych S, Chovelon J-M, Durrieu C (2004) Development of novel conductometric biosensors based on immobilized whole cell Chlorella vulgaris microalgae. Biosens Bioelectron 19:1089–1096PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kayno H, Karube I, Matsunaga T, Suzuki S, Nakayama O (1981) A photochemical fuel cell system using Anabaena N-7363. Eur J Microbiol Biotechnol 12:1–5CrossRefGoogle Scholar
  23. 23.
    Brouers M, Hall DO (1986) Ammonia and hydrogen production by immobilized cyanobacteria. J Biotechnol 3:307–321CrossRefGoogle Scholar
  24. 24.
    Bailliez C, Largeau C, Casadevall E (1985) Growth and hydrocarbon production of Botryococcus braunii immobilized in calcium alginate gel. Appl Microbiol Biotechnol 23:99–105Google Scholar
  25. 25.
    Santos-Rosa F, Galvan F, Vega JM (1989) Photoproduction of ammonium by Chlamydomonas reinhardtii cells immobilized in barium alginate: a reactor feasibility study. Appl Microbiol Biotechnol 32:285–290CrossRefGoogle Scholar
  26. 26.
    Vilchez C, Galvan F, Vega JM (1991) Glycolate photoproduction by free and alginate-entrapped cells of Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 35:716–719CrossRefGoogle Scholar
  27. 27.
    Leon R, Galvan F (1995) Glycerol photoproduction by free and calcium- entrapped cells of Chlamydomonas reinhardtii. J Biotechnol 42:61–67CrossRefGoogle Scholar
  28. 28.
    Scholz W, Galvan F, de la Rosa FF (1995) The microalga Chlamydomonas reinhardtii CW-15 as a solar cell for hydrogen peroxide photoproduction: comparison between free and immobilized cells and thylakoids for energy conversion efficiency. Sol Ener Mat Sol Cells 39:61–69CrossRefGoogle Scholar
  29. 29.
    Roncel M, Navarro JA, de la Rosa MA (1989) Coupling of solar energy to hydrogen peroxide production in the cyanobacterium Anacystis nidulans. Appl Environ Microbiol 55:483–487PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Morales I, de la Rosa FF (1992) Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: a way to solar energy conversion. Sol Ener 49:41–46CrossRefGoogle Scholar
  31. 31.
    Rossignol N, Lebeau T, Jaouen P, Robert JM (2000) Comparision of two membrane-photobioreactors, with free or immobilized cells, for the production of pigments by marine diatoms. Bioprocess Eng 23:495–501CrossRefGoogle Scholar
  32. 32.
    Lebeau T, Gaudin P, Moan R, Robert J-M (2002) A new photobioreactor for continuous marennin production with a marine diatom: influence of light intensity and the immobilized-cell matrix (alginate beads or agar layer). Appl Microbiol Biotechnol 59:153–159PubMedCrossRefGoogle Scholar
  33. 33.
    Singh Y (2003) Photosynthetic activity, and lipid and hydrocarbon production by alginate-immobilized cells of Botryococcus in relation to growth phase. J Microbiol Biotechnol 13:687–691Google Scholar
  34. 34.
    Jeanfils J, Thomas D (1986) Culture and nitrite uptake in immobilized Scenedesmus obliquus. Appl Microbiol Biotechnol 24:417–422CrossRefGoogle Scholar
  35. 35.
    Megharaj M, Pearson HW, Venkateswarlu K (1992) Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enzym Microb Technol 14:656–658CrossRefGoogle Scholar
  36. 36.
    Robinson PK (1995) Effect of pre-immobilization conditions on phosphate uptake by immobilized Chlorella. Biotechnol Lett 17:659–662CrossRefGoogle Scholar
  37. 37.
    Urrutia I, Serra JL, Lama MJ (1995) Nitrate removal from water by Senedesmus obliquus immobilized in polymeric foams. Enzym Microb Technol 17:200–205CrossRefGoogle Scholar
  38. 38.
    Rai LC, Mallick N (1992) Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 8:110–114PubMedCrossRefGoogle Scholar
  39. 39.
    Mallick N, Rai LC (1993) Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol 9:196–201PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Mallick N, Rai LC (1994) Removal of inorganic ions from wastewater by immobilized microalgae. World J Microbiol Biotechnol 10:439–443PubMedCrossRefGoogle Scholar
  41. 41.
    Vilchez C, Vega JM (1994) Nitrate uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate. Appl Microbiol Biotechnol 41:137–141CrossRefGoogle Scholar
  42. 42.
    Garbisu C, Hall DO, Serra JL (1993) Removal of phosphate by foam- immobilized Phormidium laminosum. J Chem Technol Biotechnol 57:181–189CrossRefGoogle Scholar
  43. 43.
    Kaya VM, Picard G (1995) The viability of Scenedesmus bicellularis cells immobilized on alginate screens following nutrient stravation in air at 100% relative humidity. Biotechnol Bioeng 46:459–464PubMedCrossRefGoogle Scholar
  44. 44.
    Kaya VM, Goulet J, de la Noüe J, Picard G (1996) Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis. Enzym Microb Technol 18:550–554CrossRefGoogle Scholar
  45. 45.
    Robinson PK (1998) Immobilized algal technology for wastewater treatment purposes. In: Wong Y-S, Tam NFY (eds) Wastewater treatment with algae. Springer-verlag & Landes Bioscience, New York, pp 1–16Google Scholar
  46. 46.
    Sawayama S, Rao KK, Hall DO (1998) Nitrate and phosphate removal from water by Phormidium laminosum immobilized on hallow fibres in a photobioreactor. Appl Microbiol Biotechnol 49:463–468CrossRefGoogle Scholar
  47. 47.
    de- Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ (2002) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when coimmobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can J Microbiol 48:514–521PubMedCrossRefGoogle Scholar
  48. 48.
    Brierley JA, Brierley CL, Goyak GM (1986) AMT-BIOCLAIM: a new wastewater treatment and metal recovery technology. In: Lawrences RW, Branion RMR, Ebner HG (eds) Fundamental and applied biohydrometallurgy. Elsevier, Amsterdam, pp 291–304Google Scholar
  49. 49.
    Wilkinson SC, Goulding KH, Robinson PK (1990) Mercury removal by immobilized algae in batch culture sytems. J Appl Phycol 2:223–230CrossRefGoogle Scholar
  50. 50.
    Darnall DW (1991) Removal and recovery of heavy metal ions from wastewaters using a new biosorbents: AlgaSORB. Innov Hazard Waste Treat Technol Ser 3:65–72Google Scholar
  51. 51.
    da Costa ACA, Leite SFG (1991) Metal biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotechnol Lett 13:559–562CrossRefGoogle Scholar
  52. 52.
    Granham GW, Codd GA, Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environ Sci Technol 26:1764–1770CrossRefGoogle Scholar
  53. 53.
    Avery SV, Codd GA, Gadd GM (1993) Salt-stimulation of caesium accumulation in the euryhaline green microalga, Chlorella salina: potential relevance to the development of a biological Cs-removal process. J Gen Microbiol 139:2239–2244CrossRefGoogle Scholar
  54. 54.
    Robinson PK, Wilkinson SC (1994) Removal of aqueous mercury and phosphate by gel-entrapped Chlorella in packed-bed reactors. Enzym Microb Technol 16:802–807CrossRefGoogle Scholar
  55. 55.
    Lau PS, Tam NFY, Wong YS (1998) Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresour Technol 63:115–121CrossRefGoogle Scholar
  56. 56.
    Torresdey-Gardea JL, Arenas JL, Francisco NMC, Tiemann KJ, Webb R (1998) Ability of immobilized cyanobacteria to remove metal ions from solution and demonstration of the presence of metallothionein genes in various strains. J Hazard Subs Res 1:1–18Google Scholar
  57. 57.
    Tam NFY, Wong YS, Simpson CG (1998) Removal of copper by free and immobilized microalga, Chlorella vulgaris. In: Wong Y-S, Tam NFY (eds) Wastewater treatment with algae. Springer-Verlag & Landes Bioscience, New York, NY, pp 17–35CrossRefGoogle Scholar
  58. 58.
    Travieso L, Canizares RO, Borja R, Benitez F, Dominuez AR, Dupeyron R, Valiente YV (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62:144–151PubMedCrossRefGoogle Scholar
  59. 59.
    Singh R, Prasad BB (2000) Trace metal analysis: selective sample (Copper II) enrichment on an AlgaSORB column. Process Biochem 35:897–905CrossRefGoogle Scholar
  60. 60.
    Moreno-Garrido I, Codd GA, Gadd GM, Lubian LM (2002) Cu and Zn accumulation by calcium alginate immobilized marine microalgal cells of Nannochloropsis gaditana (Eustigmatophyceae). Cienc Marin 28:107–119CrossRefGoogle Scholar
  61. 61.
    Akhtar N, Saeed A, Iqbal M (2003a) Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresour Technol 88:163–165PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Akhtar N, Iqbal J, Iqbal M (2003b) Microalgal-luffa sponge immobilized disc: a new efficient biosorbent for the removal of Ni (II) from aqueous solution. Lett Appl Microbiol 37:149–153PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Volesky B, Prasetyo I (1994) Cadmium removal in a biosorption column. Biotechnol Bioeng 43:1010–1015PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Pradhan S, Singh S, Rai LC, Parker DL (1998) Evaluation of metal biosorption efficiency of laboratory-grown Microcystis under various environmental conditions. J Microbiol Biotechnol 8:53–60Google Scholar
  65. 65.
    Parker DL, Rai LC, Mallick N, Rai PK, Kumar HD (1998) Effect of cellular metabolism and viability on metal ion accumulation by cultured biomass from a bloom of the cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 64:1545–1547PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wilkstrom P, Swajcer E, Brodelius P, Nilsson P, Mosbach K (1982) Formation of α-keto acids from amino acids using immobilized bacteria and algae. Biotechnol Lett 4:153–158CrossRefGoogle Scholar
  67. 67.
    Trevan MD, Mak AL (1988) Immobilized algae and their potential for use as biocatalysts. Trends Biotechnol 6:68–73CrossRefGoogle Scholar
  68. 68.
    Joo D-S, Cho M-G, Park J-H, Kwak J-K, Han Y-H, Bucholz R (2001) New strategy for the cultivation of microalgae using microencapsulation. J Microencapsul 18:567–576PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Corbesier P, Van Der Lelie D, Borremans B, Provoost A, De Lorenzo V, Brown NL, Lloyd JR, Csorgi E, Johansson G, Mattiasson B (1999) Whole cell and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244CrossRefGoogle Scholar
  70. 70.
    Kim J-H, Cho HJ, Ryu S-E, Choi M-U (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Agricultural and Food Engineering DepartmentIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations