Advertisement

Immobilization of Cells by Magnetic Nanoparticles

  • Alireza EbrahiminezhadEmail author
  • Seyedeh-Masoumeh Taghizadeh
  • Younes Ghasemi
  • Aydin BerenjianEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

Cell harvesting is one of the main expensive, labor-intensive, and energy-consuming steps in downstream processing. Cell immobilization has introduced as a valuable strategy for process intensification in biotechnological industries. Here we describe magnetic immobilization as a promising and novel technique for cell immobilization by using magnetic nanoparticles. This technique is based on the decoration of cells with magnetic nanoparticles to make them sensitive to magnetic field. So, the cells can be harvested simply by applying a magnetic separator.

Key words

Cell harvesting Cell immobilization Cell removal Fe3O4 nanoparticles Iron nanoparticles Iron oxide nanoparticles Magnetic immobilization Magnetic nanoparticles Magnetite nanoparticles Magnetic separation 

Notes

Acknowledgment

This study was supported by a collaboration between Shiraz university of Medical Sciences and The University of Waikato (New Zealand).

References

  1. 1.
    Ebrahiminezhad A, Varma V, Yang S, Berenjian A (2016) Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl Microbiol Biotechnol 100(1):173–180PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ebrahiminezhad A, Varma V, Yang S, Ghasemi Y, Berenjian A (2015) Synthesis and application of amine functionalized iron oxide nanoparticles on menaquinone-7 fermentation: a step towards process intensification. Nano 6(1):1Google Scholar
  3. 3.
    Raee MJ, Ebrahiminezhad A, Gholami A, Ghoshoon MB, Ghasemi Y (2018) Magnetic immobilization of recombinant E. coli producing extracellular asparaginase: an effective way to intensify downstream process. Sep Sci Technol 53(9):1397–1404CrossRefGoogle Scholar
  4. 4.
    Ebrahiminezhad A, Rasoul-Amini S, Davaran S, Barar J, Ghasemi Y (2014) Impacts of iron oxide nanoparticles on the invasion power of Listeria monocytogenes. Curr Nanosci 10(3):382–388CrossRefGoogle Scholar
  5. 5.
    Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol 43(4):493–507CrossRefGoogle Scholar
  6. 6.
    Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) Impact of 3–aminopropyltriethoxysilane-coated iron oxide nanoparticles on menaquinone-7 production using B. subtilis. Nano 7(11):350Google Scholar
  7. 7.
    Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochem 62(2017):231–240CrossRefGoogle Scholar
  8. 8.
    Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett 40(2):237–248PubMedCrossRefGoogle Scholar
  9. 9.
    Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J, Moghadam M, Ghasemi Y (2012) Synthesis, characterization and anti-Listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr Nanosci 8(6):868–874CrossRefGoogle Scholar
  10. 10.
    Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2012) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Kor Chem Soc 33(12):3957–3962CrossRefGoogle Scholar
  11. 11.
    Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2013) Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B Biointerfaces 102:534–539PubMedCrossRefGoogle Scholar
  12. 12.
    Ebrahiminezhad A, Rasoul-Amini S, Kouhpayeh A, Davaran S, Barar J, Ghasemi Y (2015) Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Curr Nanosci 11(1):113–119CrossRefGoogle Scholar
  13. 13.
    Seifan M, Sarmah AK, Ebrahiminezhad A, Ghasemi Y, Samani AK, Berenjian A (2018) Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles. Appl Microbiol Biotechnol 102(5):2167–2178PubMedCrossRefGoogle Scholar
  14. 14.
    Seifan M, Sarmah AK, Samani AK, Ebrahiminezhad A, Ghasemi Y, Berenjian A (2018) Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles. Appl Microbiol Biotechnol 102:4489–4498PubMedCrossRefGoogle Scholar
  15. 15.
    Seifan M, Ebrahiminezhad A, Ghasemi Y, Samani AK, Berenjian A (2017) Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete. Appl Microbiol Biotechnol 102(1):175–184PubMedCrossRefGoogle Scholar
  16. 16.
    Seifan M, Ebrahiminezhad A, Ghasemi Y, Samani AK, Berenjian A (2018) The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation. Appl Microbiol Biotechnol 102(8):3595–3606PubMedCrossRefGoogle Scholar
  17. 17.
    Ansari F, Grigoriev P, Libor S, Tothill IE, Ramsden JJ (2009) DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng 102(5):1505–1512PubMedCrossRefGoogle Scholar
  18. 18.
    Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K et al (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine 5:1085–1094PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Huang YF, Wang YF, Yan XP (2010) Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ Sci Technol 44(20):7908–7913PubMedCrossRefGoogle Scholar
  20. 20.
    Li YG, Gao HS, Li WL, Xing JM, Liu HZ (2009) In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour Technol 100(21):5092–5096PubMedCrossRefGoogle Scholar
  21. 21.
    Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M et al (2010) Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. Int J Nanomedicine 5:631–637PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ebrahiminezhad A, Bagheri M, Taghizadeh S, Berenjian A, Ghasemi Y (2016) Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci 7:015018Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Medical Nanotechnology, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
  2. 2.Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research CenterShiraz University of Medical SciencesShirazIran
  3. 3.Faculty of Science and EngineeringThe University of WaikatoHamiltonNew Zealand

Personalised recommendations