Whole Cell Entrapment Techniques

  • Jorge A. TrellesEmail author
  • Cintia W. Rivero
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)


Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others.

Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation, and bioprocess scale-up feasibility.

Cell entrapment is the most widely used technique for whole cell immobilization. This technique—in which the cells are included within a rigid network—is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100% in most cases).

Key words

Entrapment immobilization Whole cells Alginate Agar Agarose Polyacrylamide Post-immobilization Stability Reusability 



This work was supported by Agencia Nacional de Promoción Científica y Tecnológica, Universidad Nacional de Quilmes and CONICET.


  1. 1.
    Guisan JM (2006) Immobilization of enzymes and cells. Humana Press, Totowa, NJCrossRefGoogle Scholar
  2. 2.
    Nedovic V, Willaert R (2004) Fundamentals of cell immobilisation, vol 1. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  3. 3.
    Trelles JA, Valino AL, Runza V, Lewkowicz ES, Iribarren AM (2005) Screening of catalytically active microorganisms for the synthesis of 6-modified purine nucleosides. Biotechnol Lett 27:759–763CrossRefGoogle Scholar
  4. 4.
    Trelles JA, Fernández-Lucas J, Condezo LA, Sinisterra JV (2004) Nucleoside synthesis by immobilised bacterial whole cells. J Mol Catal B Enzym 30:219–227CrossRefGoogle Scholar
  5. 5.
    Fernández-Lucas J, Condezo LA, Martinez- Lagos F, Sinisterra JV (2007) Synthesis of 2′-deoxyibosylnucleosides using new 2′-deoxyribosyltransferase microorganism producers. Enzym Microb Technol 40:1147–1155CrossRefGoogle Scholar
  6. 6.
    Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319CrossRefGoogle Scholar
  7. 7.
    van der Sluis C, Mulder AN, Grolle KC, Engbers GH, ter Schure EG, Tramper J, Wijffels RH (2000) Immobilized soy-sauce yeasts: development and characterization of a new polyethylene-oxide support. J Biotechnol 80:179–188CrossRefGoogle Scholar
  8. 8.
    Hung CP, Lo H-F, Hsu WH, Chen SC, Lin LL (2008) Immobilization of Escherichia coli novablue γ-glutamyltranspeptidase in Ca-alginate- κ -carrageenan beads. Appl Biochem Biotechnol 150:157–170CrossRefGoogle Scholar
  9. 9.
    Hae S (2012) Agarose-gel-immobilized recombinant bacterial biosensors for simple and disposable on-site detection of phenolic compounds. Appl Microbiol Biotechnol 93:1895–1904CrossRefGoogle Scholar
  10. 10.
    Yujian W, Xiaojuan Y, Wei T, Hongyu L (2007) High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. J Microbiol Methods 68:212–217CrossRefGoogle Scholar
  11. 11.
    Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964CrossRefGoogle Scholar
  12. 12.
    Hulst AC, Tramper J, Van’t Riet K, Westerbeek JM (1985) A new technique for the production of immobilized biocatalyst in large quantities. Biotechnol Bioeng 27:870–876CrossRefGoogle Scholar
  13. 13.
    Arvizu-Higuera DL, Hernández-Carmona G, Rodríguez-Montesinos YE (2002) Parameters affecting the conversion of alginic acid to sodium alginate. Cienc Mar 28:27–36CrossRefGoogle Scholar
  14. 14.
    Britos CN, Cappa VA, Rivero CW, Sambeth JE, Lozano ME, Trelles JA (2012) Biotransformation of halogenated 2′-deoxyribosides by immobilized lactic acid bacteria. J Mol Catal B Enzym 79:49–53CrossRefGoogle Scholar
  15. 15.
    Ha J, Engler CR, Wild JR (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100:1138–1142CrossRefGoogle Scholar
  16. 16.
    Yujian W, Xiaojuan Y, Hongyu L, Wei T (2006) Immobilization of Acidithiobacillus ferrooxidans with complex of PVA an sodium alginate. Polym Degrad Stabil 91:2408–2414CrossRefGoogle Scholar
  17. 17.
    Jeon C, Park JY, Yoo YJ (2002) Characteristics of metal removal using carboxylated alginic acid. Water Res 36:1814–1824CrossRefGoogle Scholar
  18. 18.
    Rivero CW, Britos CN, Lozano ME, Sinisterra JV, Trelles JA (2012) Green biosynthesis of floxuridine by immobilized microorganisms. FEMS Microbiol Lett 331:31–36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratorio de Investigaciones en Biotecnología Sustentable (LIBioS), Universidad Nacional de QuilmesBernalArgentina

Personalised recommendations