Advertisement

NMR of Immobilized Enzymes

  • Linda Cerofolini
  • Enrico RaveraEmail author
  • Marco Fragai
  • Claudio Luchinat
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

Solid-state NMR has become the method of choice for the assessment of protein structure for insoluble objects lacking long-range order. In this context, it is apparent that solid-state NMR is also perfectly poised toward the characterization of immobilized proteins. For these systems, it is possible to understand at the atomic level which perturbations, if any, are occurring as a result of the functionalization. Here we describe how it is possible to accomplish the NMR characterization of enzymes that have been immobilized through different approaches, and we introduce the reader to the choice of the experimental strategy that can be useful in different cases. An outlook on the level of information that can be attained is also given, in view of recent methodological advancements.

Key words

Solid-state NMR Protein structure Enzyme structure Conformational changes upon immobilization NMR spectroscopy 

Notes

Acknowledgments

Dr. Venita Decker and Dr. Sebastian Wegner (Bruker Biospin), and Dr. Yusuke Nishiyiama (JEOL) are acknowledged for providing the instructions for operating low-diameter rotors.

References

  1. 1.
    Abragam A (1961) The principles of nuclear magnetism. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, LondonGoogle Scholar
  3. 3.
    Bertini I, McGreevy KS, Parigi G (2012) NMR in systems biology. Wiley, Hoboken, NJGoogle Scholar
  4. 4.
    Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659–1659CrossRefGoogle Scholar
  5. 5.
    Laage S, Sachleben J, Steuernagel S et al (2008) Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. J Magn Reson 196:133–141CrossRefGoogle Scholar
  6. 6.
    Barbet-Massin E, Pell AJ, Retel JS et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497.  https://doi.org/10.1021/ja507382jCrossRefGoogle Scholar
  7. 7.
    Ravera E, Martelli T, Geiger Y et al (2016) Biosilica and bioinspired silica studied by solid-state NMR. Coord Chem Rev 327–328:110–122.  https://doi.org/10.1016/j.ccr.2016.06.003CrossRefGoogle Scholar
  8. 8.
    iNEXT Consortium (2018) iNEXT: a European facility network to stimulate translational structural biology. FEBS Lett 592:1909–1917.  https://doi.org/10.1002/1873-3468.13062CrossRefGoogle Scholar
  9. 9.
    Kennedy SD, Bryant RG (1990) Structural effects of hydration: Studies of lysozyme by 13C solids nmr. Biopolymers 29:1801–1806.  https://doi.org/10.1002/bip.360291411CrossRefPubMedGoogle Scholar
  10. 10.
    Pauli J, van Rossum B, Förster H et al (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the α-spectrin SH3 domain. J Magn Reson 143:411–416.  https://doi.org/10.1006/jmre.2000.2029CrossRefPubMedGoogle Scholar
  11. 11.
    Fragai M, Luchinat C, Parigi G, Ravera E (2013) Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins. J Biomol NMR 57:155–166.  https://doi.org/10.1007/s10858-013-9776-0CrossRefPubMedGoogle Scholar
  12. 12.
    Böckmann A, Gardiennet C, Verel R et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327CrossRefGoogle Scholar
  13. 13.
    Bertini I, Engelke F, Gonnelli L et al (2012) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54:123–127CrossRefGoogle Scholar
  14. 14.
    Mandal A, Boatz JC, Wheeler TB, van der Wel PCA (2017) On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. J Biomol NMR 67:165–178.  https://doi.org/10.1007/s10858-017-0089-6CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kobayashi T, Nishiyama Y, Pruski M (2018) Chapter 1. Heteronuclear correlation solid-state NMR spectroscopy with indirect detection under fast magic-angle Spinning. In: Hodgkinson P (ed) New developments in NMR. Royal Society of Chemistry, Cambridge, pp 1–38Google Scholar
  16. 16.
    Schuetz A, Wasmer C, Habenstein B et al (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1-227). Chembiochem 11:1543–1551.  https://doi.org/10.1002/cbic.201000124CrossRefPubMedGoogle Scholar
  17. 17.
    Martelli T, Ravera E, Louka A et al (2016) Atomic level quality assessment of enzymes encapsulated in bio-inspired silica. Chem Eur J 4:425–432CrossRefGoogle Scholar
  18. 18.
    Varghese S, Halling PJ, Häussinger D, Wimperis S (2016) High-resolution structural characterization of a heterogeneous biocatalyst using solid-state NMR. J Phys Chem C 120:28717–28726.  https://doi.org/10.1021/acs.jpcc.6b11575CrossRefGoogle Scholar
  19. 19.
    McNeill SA, Gor’kov PL, Struppe J et al (2007) Optimizing ssNMR experiments for dilute proteins in heterogeneous mixtures at high magnetic fields. Magn Reson Chem 45:S209–S220.  https://doi.org/10.1002/mrc.2146CrossRefPubMedGoogle Scholar
  20. 20.
    Stringer JA, Bronnimann CE, Mullen CG et al (2005) Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes. J Magn Reson 173:40–48.  https://doi.org/10.1016/j.jmr.2004.11.015CrossRefPubMedGoogle Scholar
  21. 21.
    McNeill SA, Gor’kov PL, Shetty K et al (2009) A low-E magic angle spinning probe for biological solid state NMR at 750 MHz. J Magn Reson 197:135–144.  https://doi.org/10.1016/j.jmr.2008.12.008CrossRefPubMedGoogle Scholar
  22. 22.
    Ravera E, Ciambellotti S, Cerofolini L et al (2016) Solid-state NMR of PEGylated proteins. Angew Chem Int Ed 55:2446–2449.  https://doi.org/10.1002/anie.201510148CrossRefGoogle Scholar
  23. 23.
    Cerofolini L, Giuntini S, Carlon A et al (2018) Characterization of PEGylated Asparaginase: new opportunities from NMR analysis of large PEGylated therapeutics. Chem Eur J 25:1984–1991.  https://doi.org/10.1002/chem.201804488CrossRefGoogle Scholar
  24. 24.
    Cavanagh J, Fairbrother WJ, Palmer AGIII et al (2007) Protein NMR spectroscopy. Principles and practice. Academic Press, SanDiegoGoogle Scholar
  25. 25.
    Lesage A, Gardiennet C, Loquet A et al (2008) Polarization transfer over the water–protein interface in solids. Angew Chem Int Ed 47:5851–5854.  https://doi.org/10.1002/anie.200801110CrossRefGoogle Scholar
  26. 26.
    Loening NM, Bjerring M, Nielsen NC, Oschkinat H (2012) A comparison of NCO and NCA transfer methods for biological solid-state NMR spectroscopy. J Magn Reson 214:81–90CrossRefGoogle Scholar
  27. 27.
    Nielsen AB, Jain S, Ernst M et al (2013) Adiabatic rotor-echo-short-pulse-irradiation mediated cross-polarization. J Magn Reson 237:147–151.  https://doi.org/10.1016/j.jmr.2013.09.002CrossRefPubMedGoogle Scholar
  28. 28.
    Fauré NE, Halling PJ, Wimperis S (2014) A solid-state NMR study of the immobilization of α-Chymotrypsin on Mesoporous Silica. J Phys Chem C 118:1042–1048.  https://doi.org/10.1021/jp4098414CrossRefGoogle Scholar
  29. 29.
    Brückner SI, Donets S, Dianat A et al (2016) Probing silica–biomolecule interactions by solid-state NMR and molecular dynamics simulations. Langmuir 32:11698–11705.  https://doi.org/10.1021/acs.langmuir.6b03311CrossRefPubMedGoogle Scholar
  30. 30.
    Geiger Y, Gottlieb HE, Akbey Ü et al (2016) Studying the conformation of a silaffin-derived pentalysine peptide embedded in bioinspired silica using solution and dynamic nuclear polarization magic-angle spinning NMR. J Am Chem Soc 138:5561–5567.  https://doi.org/10.1021/jacs.5b07809CrossRefPubMedGoogle Scholar
  31. 31.
    Adiram-Filiba N, Schremer A, Ohaion E et al (2017) Ubiquitin immobilized on mesoporous MCM41 silica surfaces—analysis by solid-state NMR with biophysical and surface characterization. Biointerphases 12:02D414.  https://doi.org/10.1116/1.4983273CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Louka A, Matlahov I, Giuntini S et al (2018) Engineering l-asparaginase for spontaneous formation of calcium phosphate bioinspired microreactors. Phys Chem Chem Phys 20:12719–12726.  https://doi.org/10.1039/c8cp00419fCrossRefPubMedGoogle Scholar
  33. 33.
    Bleaney BI, Bleaney B (1976) Electricity and magnetism. Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Varghese S, Halling PJ, Häussinger D, Wimperis S (2018) Two-dimensional 1H and 1H-detected NMR study of a heterogeneous biocatalyst using fast MAS at high magnetic fields. Solid State Nucl Magn Reson 92:7–11.  https://doi.org/10.1016/j.ssnmr.2018.03.003CrossRefPubMedGoogle Scholar
  35. 35.
    Webb AG (1997) Radiofrequency microcoils in magnetic resonance. J Magn Reson 31:1–42.  https://doi.org/10.1016/S0079-6565(97)00004-6CrossRefGoogle Scholar
  36. 36.
    Pines A, Gibby MG, Waugh JS (1973) Proton enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590CrossRefGoogle Scholar
  37. 37.
    Marks D, Vega S (1996) J Magn Reson Ser A 118:157–172CrossRefGoogle Scholar
  38. 38.
    Fragai M, Luchinat C, Martelli T et al (2013) SSNMR of biosilica-entrapped enzymes permits an easy assessment of preservation of native conformation in atomic detail. Chem Commun 50:421–423.  https://doi.org/10.1039/C3CC46896HCrossRefGoogle Scholar
  39. 39.
    Cerofolini L, Giuntini S, Louka A et al (2017) High-resolution solid-state NMR characterization of ligand binding to a protein immobilized in a silica matrix. J Phys Chem B 121:8094–8101.  https://doi.org/10.1021/acs.jpcb.7b05679CrossRefPubMedGoogle Scholar
  40. 40.
    Balayssac S, Bertini I, Falber K et al (2007) Solid-state NMR of matrix metalloproteinase 12: an approach complementary to solution NMR. Chembiochem 8:486–489CrossRefGoogle Scholar
  41. 41.
    Giuntini S, Cerofolini L, Ravera E et al (2017) Atomic structural details of a protein grafted onto gold nanoparticles. Sci Rep 7:17934.  https://doi.org/10.1038/s41598-017-18109-zCrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ravera E, Cerofolini L, Martelli T et al (2016) 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization. Sci Rep 6:27851CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Linda Cerofolini
    • 1
  • Enrico Ravera
    • 1
    • 2
    Email author
  • Marco Fragai
    • 1
    • 2
  • Claudio Luchinat
    • 1
    • 2
  1. 1.Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario, Risonanze Magnetiche di Metallo Proteine (CIRMMP)Sesto FiorentinoItaly
  2. 2.Department of ChemistryUniversity of FlorenceSesto FiorentinoItaly

Personalised recommendations