Advertisement

Overview of Immobilized Enzymes’ Applications in Pharmaceutical, Chemical, and Food Industry

  • Alessandra BassoEmail author
  • Simona Serban
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

The use of immobilized enzymes in industry is becoming a routine process for the manufacture of many key compounds in the pharmaceutical, chemical, and food industry. Some enzymes like lipases are naturally robust and efficient, can be used for the production of many different molecules, and have found broad industrial applications. Some more specific enzymes, like transaminases, have required protein engineering to become suitable for applications in industrial manufacture. For all enzymes, the possibility to be immobilized and used in a heterogeneous form brings important industrial and environmental advantages such as simplified downstream processing or continuous process operations. Here, we present a series of large-scale applications of immobilized enzymes with benefits for the food, chemical, pharmaceutical, cosmetics, and medical device industries, some of them hardly reported before.

Key words

Biocatalysis Immobilized enzymes Industrial applications Food Pharmaceutical Chemical Cosmetic Medical devices Biosensors 

References

  1. 1.
    Neuberg C, Welde E, Phytochemical reactions III (1914) Transformation of aromatic and fatty aromatic aldehydes into alcohols. Biochem Z 62:477–481Google Scholar
  2. 2.
    Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485.  https://doi.org/10.1038/nature11117CrossRefGoogle Scholar
  3. 3.
    Bornscheuer UT (2017) The fourth wave of biocatalysis is approaching. Philos Trans R Soc A Math Phys Eng Sci 376.  https://doi.org/10.1098/rsta.2017.0063CrossRefGoogle Scholar
  4. 4.
    Tufvesson P, Fu W, Skibsted Jensen J, Woodley JM (2010) Process considerations for the scale-up and implementation of biocatalysis. Food Bioprod Process 88:3–11.  https://doi.org/10.1016/j.fbp.2010.01.003CrossRefGoogle Scholar
  5. 5.
    DiCosimo R, Mc Auliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474.  https://doi.org/10.1039/c3cs35506cCrossRefGoogle Scholar
  6. 6.
    Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274.  https://doi.org/10.1021/op1002165CrossRefGoogle Scholar
  7. 7.
    Truppo MD (2017) Biocatalysis in the pharmaceutical industry: the need for speed. ACS Med Chem Lett 8:476–480.  https://doi.org/10.1021/acsmedchemlett.7b00114CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Truppo MD, Hughes G (2011) Development of an improved immobilized CAL-B for the enzymatic resolution of a key intermediate to odanacatib. Org Process Res Dev 15:1033–1035.  https://doi.org/10.1021/op200157cCrossRefGoogle Scholar
  9. 9.
    Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong LT, Falgueyret JP, Kimmel DB, Lamontagne S, Léger S, LeRiche T, Li CS, Massé F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Thérien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18:923–928.  https://doi.org/10.1016/j.bmcl.2007.12.047CrossRefPubMedGoogle Scholar
  10. 10.
    Limanto J, Shafiee A, Devine PN, Upadhyay V, Desmond RA, Foster BR, Gauthier DR, Reamer RA, Volante RP (2005) An efficient chemoenzymatic approach to (S)-γ-fluoroleucine ethyl ester. J Org Chem 70:2372–2375.  https://doi.org/10.1021/jo047918jCrossRefPubMedGoogle Scholar
  11. 11.
    Basso A, Hesseler M, Serban S (2016) Hydrophobic microenvironment optimization for efficient immobilization of lipases on octadecyl functionalised resins. Tetrahedron 72:7323–7328.  https://doi.org/10.1016/j.tet.2016.02.021CrossRefGoogle Scholar
  12. 12.
    Truppo MD, Strotman H, Hughes G (2012) Development of an immobilized transaminase capable of operating in organic solvent. ChemCatChem 4:1071–1074.  https://doi.org/10.1002/cctc.201200228CrossRefGoogle Scholar
  13. 13.
    Basso A, Neto W, Serban S, Summers BD (2018) How to optimise the immobilization of amino transaminases on synthetic enzyme carriers, to achieve up to a 13-fold increase in performances. Chem Today 36:40–42Google Scholar
  14. 14.
    Merck Provides Update on Odanacatib Development Program | Business Wire, (n.d.). https://www.businesswire.com/news/home/20160902005107/en/Merck-Update-Odanacatib-Development-Program. Accessed 3 Jan 2019
  15. 15.
    Boyer N, Marcellin P (2000) Pathogenesis, diagnosis and management of hepatitis C. J Hepatol 32:98–112.  https://doi.org/10.1016/S0168-8278(00)80419-5CrossRefPubMedGoogle Scholar
  16. 16.
    Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, Perelson AS (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282:103–107.  https://doi.org/10.1126/SCIENCE.282.5386.103CrossRefPubMedGoogle Scholar
  17. 17.
    Fukumoto T, Berg T, Ku Y, Bechstein WO, Knoop M, Lemmens H, Lobeck H, Hopf U, Neuhaus P (1996) Viral dynamics of hepatitis C early after orthotopic liver transplantation: evidence for rapid turnover of serum virions. Hepatology 24:1351–1354.  https://doi.org/10.1002/hep.510240606CrossRefPubMedGoogle Scholar
  18. 18.
    E. Domingo, E. Martinez-Salas, F. Sobrino, J. Carlos De La Tortea, A. Portela, J. Ortin, C. Lopez-Galindezb, P. Pkez-Breaab, N. Villanuevab, R. Nhjera’, S. Vandepol’, D. Steinhauer’, N. Depolo’, J. Holland, The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance-a review, Gene 40 (1985) 1–8CrossRefGoogle Scholar
  19. 19.
    Martell M, Esteban JI, Quer J, Genescà J, Weiner A, Esteban R, Guardia J, Gómez J (1992) Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol 66:3225–3229CrossRefGoogle Scholar
  20. 20.
    Cagulada A, Chan J, Chan L, Colby DA (2015) Synthesis of an antiviral compound, US 2015/0175626A1Google Scholar
  21. 21.
    Bjornson K, Canales E, Cottell JJ, Karki KK (2016) Inhibitors of Hepatitis C virus, US 9296782 B2Google Scholar
  22. 22.
    Yang CY (2014) Hepatitis C treatments with Sofosbuvir, WO 2014/185995 AlGoogle Scholar
  23. 23.
    Martin N, Schöne O, Spitzenstätter HP, Benito-Garagorri D (2016) A process for preparing a crystalline form of sofosbuvir, WO 2016/156512 AGoogle Scholar
  24. 24.
    Gaboardi M, Castaldi M, Castaldi G, Helmy S (2016) Sofosbuvir in crystalline form and process for its preparation, WO 2016/016327 AlGoogle Scholar
  25. 25.
    Muñiz CC, Zelaya TEC, Esquivel GR, Perrino FJF (2007) Penicillin and cephalosporin production: a historical perspective. Rev Latinoam Microbiol 49:88–98Google Scholar
  26. 26.
    Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br J Exp Pathol 10:226PubMedCentralGoogle Scholar
  27. 27.
    Florey H, Chain E, Heatley N, Jennings M, Sanders A, Abraham E, Florey M (1950) Antibiotics: a survey of penicillin, streptomycin, and other antimicrobial substances from fungi, actinomycetes, bacteria, and plants. JAMA 143(13):1217Google Scholar
  28. 28.
    Wegman MA, Janssen MHA, van Rantwijk F, Sheldon RA (2001) Towards biocatalytic synthesis of β-lactam antibiotics. Adv Synth Catal 343:559–576.  https://doi.org/10.1002/1615-4169(200108)343:6/7<559::AID-ADSC559>3.3.CO;2-QCrossRefGoogle Scholar
  29. 29.
    Harold MM, Van Theodorus J, Godfried MD (2005) Process for the synthesis of cefaclor, WO 2006/069984 A2Google Scholar
  30. 30.
    European Centre For Disease Prevention And Control, Antibiotic consumption in Europe (2017). http://drive-ab.eu/wp-content/uploads/2014/09/WP1A_Final-QMs-QIs_final.pdf. Accessed 28 Jan 2019
  31. 31.
    Batchelor FR, Doyle FP, Nayler JHC, Rolinson GN (1959) Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations. Nature 183:257–258.  https://doi.org/10.1038/183257b0CrossRefPubMedGoogle Scholar
  32. 32.
    Rolinson GN, Batchelor FR, Butterworth D, Cameron-Wood J, Cole M, Eustace GC, Hart MV, Richards M, Chain EB (1960) Formation of 6-aminopenicillanic acid from penicillin by enzymatic hydrolysis. Nature 187:236–237.  https://doi.org/10.1038/187236a0CrossRefPubMedGoogle Scholar
  33. 33.
    Claridge CA, Gourevitch A, Lein J (1960) Bacterial penicillin amidase. Nature 187:237–238.  https://doi.org/10.1038/187237a0CrossRefPubMedGoogle Scholar
  34. 34.
    Huang HT, English AR, Seto TA, Shull GM, Sobin BA (1960) Enzymatic hydrolysis of the side chain of penicillins. J Am Chem Soc 82:3790–3791.  https://doi.org/10.1021/ja01499a083CrossRefGoogle Scholar
  35. 35.
    Kallenberg AI, van Rantwijk F, Sheldon RA (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal 347:905–926.  https://doi.org/10.1002/adsc.200505042CrossRefGoogle Scholar
  36. 36.
    Vandamme EJ (1984) Biotechnology of industrial antibiotics. M. DekkerGoogle Scholar
  37. 37.
    Vandamme EJ (1983) Peptide antibiotic production through immobilized biocatalyst technology. Enzym Microb Technol 5:403–416.  https://doi.org/10.1016/0141-0229(83)90021-2CrossRefGoogle Scholar
  38. 38.
    Shewale JG, Sudhakaran VK (1997) Penicillin V acylase: its potential in the production of 6-aminopenicillanic acid. Enzym Microb Technol 20:402–410.  https://doi.org/10.1016/S0141-0229(96)00176-7CrossRefGoogle Scholar
  39. 39.
    Parmar A, Kumar H, Marwaha S, Kennedy J (2000) Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol Adv 18:289–301.  https://doi.org/10.1016/S0734-9750(00)00039-2CrossRefPubMedGoogle Scholar
  40. 40.
    Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Process Res Dev 2:128–133.  https://doi.org/10.1021/op9700643CrossRefGoogle Scholar
  41. 41.
    Kasche V (1986) Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzym Microb Technol 8:4–16.  https://doi.org/10.1016/0141-0229(86)90003-7CrossRefGoogle Scholar
  42. 42.
    Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309.  https://doi.org/10.1126/science.1188934CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Truppo MD, Janey JM, Hughes G (2012) Immobilized transaminases and processes for making and using immobilized transaminase, WO2012177527A1Google Scholar
  44. 44.
    Hansen KB, Hsiao Y, Xu F, Rivera N, Clausen A, Kubryk M, Krska S, Rosner T, Simmons B, Balsells J, Ikemoto N, Sun Y, Spindler F, Malan C, Grabowski EJJ, Armstrong JD (2009) Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc 131:8798–8804.  https://doi.org/10.1021/ja902462qCrossRefPubMedGoogle Scholar
  45. 45.
    White EH (1955) The chemistry of the N-alkyl-N-nitrosoamides. II. A new method for the deamination of aliphatic amines. J Am Chem Soc 77:6011–6014.  https://doi.org/10.1021/ja01627a064CrossRefGoogle Scholar
  46. 46.
    Ditrich K, Balkenhohl F, Ladner W (1996) Separation of optically active amides, WO 97/10201A1Google Scholar
  47. 47.
    Balkenhohl F, Ditrich K, Nübling C (1995) Racemate separation of primary and secondary heteroatom-substituted amine by enzyme-catalysed acylation, WO1996023894A1Google Scholar
  48. 48.
    ChiPros® Chiral Amines for Your Innovation - BASF Intermediates, (n.d.). http://www.intermediates.basf.com/chemicals/chiral-intermediates/amines. Accessed 2 Jan 2019
  49. 49.
    Simon A, Karl U (2010) Expanding the scope of industrial biocatalysis, spec. Chem Mag:36–38Google Scholar
  50. 50.
    Ohrui T, Sakakibara Y, Aono Y, Kato M, Takao H, Kawaguchi T (1973), Process for continuously synthesizing acrylic acid esters, US 3875212AGoogle Scholar
  51. 51.
    Hauer B, Branneby CK, Maurer S, Trodler P, Miiller M (2012), CALB muteins and their use, US 8206969B2Google Scholar
  52. 52.
    van Rantwijk F, Hacking MAPJ, Sheldon RA (2000) Lipase-catalyzed synthesis of carboxylic amides: nitrogen nucleophiles as acyl acceptor. Monatshefte Fuer Chemie/Chemical Mon 131:549–569.  https://doi.org/10.1007/s007060070086CrossRefGoogle Scholar
  53. 53.
    de Zoete MC, Kock-van Dalen AC, van Rantwijk F, Sheldon RA (1996) Lipase-catalysed ammoniolysis of lipids. A facile synthesis of fatty acid amides. J Mol Catal B Enzym 2:141–145.  https://doi.org/10.1016/S1381-1177(96)00025-2CrossRefGoogle Scholar
  54. 54.
    Brandstadt KF, Lane TH, Gross RA (2004) Enzyme catalyzed organosilicon esters and amides, US 2004/0082024A1Google Scholar
  55. 55.
    Jackson D (2011) Application of biocatalysis in the agrochemical industry. In: Tao J, Kazlauskas RJ (eds) Biocatal. green chem. chem. process dev. John Wiley & Sons, Hoboken, pp 255–276CrossRefGoogle Scholar
  56. 56.
    Blaser H-U, Buser H-P, Coers K, Hanreich R, Jalett H-P, Jelsch E, Pugin B, Schneider H-D, Spindler F, Wegmann A (1999) The chiral switch of metolachlor: the development of a large-scale enantioselective catalytic process. Chimia (Aarau) 53:275–280Google Scholar
  57. 57.
    Blaser H-U (2002) The chiral switch of (S)-metolachlor: a personal account of an industrial odyssey in asymmetric catalysis. Adv Synth Catal 344:17.  https://doi.org/10.1002/1615-4169(200201)344:1<17::AID-ADSC17>3.0.CO;2-8CrossRefGoogle Scholar
  58. 58.
    Blaser H-U, Pugin B, Spindler F, Thommen M (2007) From a chiral switch to a ligand portfolio for asymmetric catalysis. Acc Chem Res 40:1240–1250.  https://doi.org/10.1021/ar7001057CrossRefPubMedGoogle Scholar
  59. 59.
    Shroff JR, Shroff VR, Shanker B (2013) Hydrogenation of imines - Google Patents, US8461386B2Google Scholar
  60. 60.
    Nuebling C, Ditrich K, Dully C (1998) Optical resolution of primary amines by enantioselective acylation with a long-chain alkoxyalkanoate or phenoxyalkanoate ester in the presence of a lipase, DE19837745A1Google Scholar
  61. 61.
    Riechers H, Simon J, Hoehn A, Kramer A, Funke F, Siegel W, Nuebling C (1998) Racemization of optically active amines useful as pharmaceuticals or intermediates, by contacting in gaseous form with hydrogen and catalyst, giving high racemization degree and yield, DE19852282A1Google Scholar
  62. 62.
    Hayes KS, Lutz EG, Turcotte MG (1999) Racemization of optically active alkoxyamines, US6060624AGoogle Scholar
  63. 63.
    Ansorge-Schumacher MB, Thum O (2013) Immobilised lipases in the cosmetics industry. Chem Soc Rev 42:6475–6490.  https://doi.org/10.1039/c3cs35484aCrossRefPubMedGoogle Scholar
  64. 64.
    Nieguth R, Eckstein M, Wiemann LO, Thum O, Ansorge-Schumacher MB (2011) Enabling industrial biocatalytic processes by application of silicone-coated enzyme preparations. Adv Synth Catal 353:2522–2528.  https://doi.org/10.1002/adsc.201100421CrossRefGoogle Scholar
  65. 65.
    Clendennen S, Yuan J (2015) An enzymatic approach to sustainable manufacturing of personal care ingredients: reducing the traditional environmental impact of a consumer product’s life cycle. Euro Cosmet 9:334Google Scholar
  66. 66.
    Garcia T, Martinez M, Aracil J (1996) Enzymatic synthesis of myristyl myristate. Estimation of parameters and optimization of the process. Biocatal Biotransformation 14:67–85.  https://doi.org/10.3109/10242429609106877CrossRefGoogle Scholar
  67. 67.
    Hills G (2003) Industrial use of lipases to produce fatty acid esters. Eur J Lipid Sci Technol 105:601–607.  https://doi.org/10.1002/ejlt.200300853CrossRefGoogle Scholar
  68. 68.
    E. US EPA, OCSPP,OPPT, Presidential Green Chemistry Challenge: 2009 Greener Synthetic Pathways Award, (n.d.). https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-2009-greener-synthetic-pathways-award. Accessed 2 Jan 2019
  69. 69.
    Chibata I (1982) Application of immobilized enzymes for asymmetric reactions. In: V. 185 ACS Symposium Series (ed) Asymmetric react. process. chem. American Chemical Society, Washington, pp 195–203.  https://doi.org/10.1021/bk-1982-0185.ch014CrossRefGoogle Scholar
  70. 70.
    Chibata I, Tosa T, Sato T, Mori T, Yamamoto K (1975) Applications of immobilized enzymes and immobilized microbial cells for L-amino acid production. In: Immobil. Enzym. Technol. Springer US, Boston, MA, pp 111–127.  https://doi.org/10.1007/978-1-4615-8735-4_9.CrossRefGoogle Scholar
  71. 71.
    Crabb D, Shettyt JK (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252–256CrossRefGoogle Scholar
  72. 72.
    Chen WP (1980) Glucose isomerase. Process Biochem 15:30–41Google Scholar
  73. 73.
    Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60:280–300PubMedPubMedCentralGoogle Scholar
  74. 74.
    Jensen VJ, Rugh S (1987) Industrial-scale production and application of immobilized glucose isomerase. In: Mosbach K (ed) Methods Enzymol. - Immobil. Enzym. Cels, part C. Elsevier Inc., Amsterdam, pp 356–370CrossRefGoogle Scholar
  75. 75.
    Jørgensen OB, Karlsen LG, Nielsen NB, Pedersen S, Rugh S (1988) A new immobilized glucose isomerase with high productivity produced by a strain of streptomyces murinus. Starch Stärke 40:307–313.  https://doi.org/10.1002/star.19880400809CrossRefGoogle Scholar
  76. 76.
    Zittan L, Poulsen PB, Hemmingsen SH (1975) Sweetzyme - a new immobilized glucose isomerase. Starch Stärke 27:236–241.  https://doi.org/10.1002/star.19750270705CrossRefGoogle Scholar
  77. 77.
    Hong YH, Kim JH, Kim SB, Kim JH, Lee YM (2011) Immobilization of psicose-epimerase and a method of producing d-psicose using the same, WO 2011/040708 A3Google Scholar
  78. 78.
    Maruta K, Yamamoto K, Nishimoto T, Chaen H, Nakada T (2011) Ketose 3-epimerase, its preparation and uses, US20110275138A1Google Scholar
  79. 79.
    Deok-kun Oh HJ Kim YJ Lee SH Song SW Park JH Kim SB (2011) D-psicose production method by D-psicose epimerase, US8030035B2Google Scholar
  80. 80.
    Woodyer RD, Armentrout RW (2014) 3-Epimerase, WO 2014/049373Google Scholar
  81. 81.
    Woodyer RD, Cohen JC, Bridges JR (2017) Sweetener, US 9635879 B2Google Scholar
  82. 82.
    Tate & Lyle Introduces DOLCIA PRIMA® Crystalline Allulose; Low-Calorie Solution Provides the Full Taste and Enjoyment of Sugar, But Without All the Calories, (n.d.). https://www.tateandlyle.com/news/tate-lyle-introduces-dolcia-prima-crystalline-allulose-low-calorie-solution-provides-full. Accessed 2 Jan 2019
  83. 83.
    Chini J, Febbruari B, Matulli M, Vagnoli L (2014) Enzymes immobilized on styrene-divinyl benzene matrices and the use thereof in industrial productions., WO2014/006606 A1Google Scholar
  84. 84.
    Lim BC, Kim HJ, Oh DK (2008) Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose isomerase from Thermotoga neapolitana. Appl Biochem Biotechnol 149:245–253.  https://doi.org/10.1007/s12010-007-8095-xCrossRefGoogle Scholar
  85. 85.
    Oh DK (2007) Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol 76:1–8.  https://doi.org/10.1007/s00253-007-0981-1CrossRefGoogle Scholar
  86. 86.
    Kim P, Roh H, Yoon S, Choi J (1999) Biological tagatose production by recombinant escherichia coli, WO 00/68397Google Scholar
  87. 87.
    Park A-RR, Oh D-KK (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85:1279–1286.  https://doi.org/10.1007/s00253-009-2356-2CrossRefPubMedGoogle Scholar
  88. 88.
    Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A (2010) Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized beta-galactosidases from Aspergillus oryzae. Process Biochem 46:245–252.  https://doi.org/10.1016/j.procbio.2010.08.018CrossRefGoogle Scholar
  89. 89.
    Gaur R, Pant H, Jain R, Khare SK (2006) Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae b-galactosidase. Food Chem 97:426–430.  https://doi.org/10.1016/j.foodchem.2005.05.020CrossRefGoogle Scholar
  90. 90.
    Benjamins F, Cao L, Broekhuis A (2015) Production of galacto-oligosaccharides, WO 2015/034356A1Google Scholar
  91. 91.
    Reyes-Duarte D, Lopez-Cortes N, Torres P, Comelles F, Parra JL, Peña S, Ugidos AV, Ballesteros A, Plou FJ (2011) Synthesis and properties of ascorbyl esters catalyzed by lipozyme TL IM using triglycerides as acyl donors. J Am Oil Chem Soc 88:57–64.  https://doi.org/10.1007/s11746-010-1643-5CrossRefGoogle Scholar
  92. 92.
    Burham H, Rasheed RAGA, Noor NM, Badruddin S, Sidek H (2009) Enzymatic synthesis of palm-based ascorbyl esters. J Mol Catal B Enzym 58:153–157.  https://doi.org/10.1016/J.MOLCATB.2008.12.012CrossRefGoogle Scholar
  93. 93.
    Villeneuve P (2007) Lipases in lipophilization reactions. Biotechnol Adv 25:515–536.  https://doi.org/10.1016/J.BIOTECHADV.2007.06.001CrossRefPubMedGoogle Scholar
  94. 94.
    Stevenson RW, Luddy FE, Rothbart HL (1979) Enzymatic acyl exchange to vary saturation in di- and triglycerides. J Am Oil Chem Soc 56:676–680.  https://doi.org/10.1007/BF02660072CrossRefGoogle Scholar
  95. 95.
    Ahmadi L, Wright AJ, Marangoni AG (2009) Structural and mechanical behavior of tristearin/triolein-rich mixtures and the modification achieved by interesterification. Food Biophys 4:64–76.  https://doi.org/10.1007/s11483-009-9102-2CrossRefGoogle Scholar
  96. 96.
    Dijkstra AJ (2013) Edible oil processing from a patent perspective. Springer US, Boston, MA.  https://doi.org/10.1007/978-1-4614-3351-4CrossRefGoogle Scholar
  97. 97.
    Willis WM, Marangoni AG (2002) Enzymatic interesterification. In: Akoh CC (ed) Food lipids. Marcel Dekker, New York, pp 839–875.  https://doi.org/10.1201/9780203908815CrossRefGoogle Scholar
  98. 98.
    Xu X, Guo Z, Zhan H, Vikbjerg AF, Damstrup ML (2006) Chemical and enzymatic interesterification of lipids for use in food. In: Gunstone FD (ed) Modifying lipids use food, Woodhead, Sawston, pp 234–272CrossRefGoogle Scholar
  99. 99.
    Asif M (2011) Process advantages and product benefits of interesterification in oils and fats. Int J Nutr Pharmacol Neurol Dis 1:134.  https://doi.org/10.4103/2231-0738.84203CrossRefGoogle Scholar
  100. 100.
    Coleman M, Macrae A (1976) Fat process and composition, GB 1577933Google Scholar
  101. 101.
    Halling P, Macrae A (1989) Fat processing, US4863860Google Scholar
  102. 102.
    Wisdom RA, Dunnill P, Lilly MD, Macrae A (1984) Enzymic interesterification of fats: factors influencing the choice of support for immobilized lipase. Enzym Microb Technol 6:443–446.  https://doi.org/10.1016/0141-0229(84)90093-0CrossRefGoogle Scholar
  103. 103.
    Coleman MH, Macrae AR (1979) Fat process and composition, US4275081Google Scholar
  104. 104.
    Macrae AR (1985) Microbial lipases as catalysts for the interesterification of oils and fats. In: Ratledge C, Dawson P, Rattray J (eds) Biotechnol. Oils fats Ind. Amer Oil Chem Society, Champaign, pp 189–198Google Scholar
  105. 105.
    Sawamura N (1988) Transesterification of fats and oils. Ann N Y Acad Sci 542:266–269.  https://doi.org/10.1111/j.1749-6632.1988.tb25840.xCrossRefGoogle Scholar
  106. 106.
    Matsuo T, Sawamura N, Hashimoto Y, Hashida W (1981) EP0035883 Method for enzymatic interesterification of lipid and enzyme used therein, EP0035883Google Scholar
  107. 107.
    Matsuo T, Sawamura N, Hashimoto Y, Hashida W (1979) Producing a cacao butter substitute by transesterification of fats and oils, GB2035359AGoogle Scholar
  108. 108.
    Svendsen A, Skjot M, Brask J, Vind J, Patkar SA (2007) Immobilised enzymes, WO 2007/080197 A2Google Scholar
  109. 109.
    Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62:197–212.  https://doi.org/10.1016/J.MOLCATB.2009.11.010CrossRefGoogle Scholar
  110. 110.
    Holm HC, Cowan D (2008) The evolution of enzymatic interesterification in the oils and fats industry. Eur J Lipid Sci Technol 110:679–691.  https://doi.org/10.1002/ejlt.200800100CrossRefGoogle Scholar
  111. 111.
    De Greyt W, Dijkstra AJ (2008) Fractionation and interesterification. In: Dijkstra AJ, Hamilton RJ, Hamm W (eds) Trans fat acids. Blackwell, New York, pp 181–202CrossRefGoogle Scholar
  112. 112.
    Talbot G, Bhaggan K (2010) The “friendly” way to process fats. Food Mark Technol:4–7Google Scholar
  113. 113.
    Akoh C, Xu X (2002) Enzymatic production of Betapol and other specialty fats. In: Kuo TM, Gardner H (eds) Lipid Biotechnol. Marcel Dekker, New York, pp 461–478. https://www.crcpress.com/Lipid-Biotechnology/author/p/book/9780203908198. Accessed 2 Jan 2019Google Scholar
  114. 114.
    Hooper L, Thompson RL, Harrison RA, Summerbell CD, Moore H, Worthington HV, Durrington PN, Ness AR, Capps NE, Davey Smith G, Riemersma RA, Ebrahim SBJ (2004) Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database Syst Rev 18:CD003177.  https://doi.org/10.1002/14651858.CD003177.pub2CrossRefGoogle Scholar
  115. 115.
    Radack K, Deck C, Huster G (1991) The effects of low doses of n-3 fatty acid supplementation on blood pressure in hypertensive subjects. Arch Intern Med 151:1173.  https://doi.org/10.1001/archinte.1991.00400060097017CrossRefPubMedGoogle Scholar
  116. 116.
    O’Keefe JH, Harris WS (2000) Omega-3 fatty acids: time for clinical implementation? Am J Cardiol 85:1239–1241.  https://doi.org/10.1016/S0002-9149(00)00735-9CrossRefPubMedGoogle Scholar
  117. 117.
    Gudmundur G, Halldorsson A, Thorstad O (2003) Lipase-catalysed esterification of marine oil, US 7491522B2Google Scholar
  118. 118.
    Kralovec J, Wang W, Barrow JC (2009) Enzymatic modification of oil, WO 2009/040676A2Google Scholar
  119. 119.
    Kralovec J, Wang W (2006) Immobilized enzymes and methods of using thereof, EP2439268B1Google Scholar
  120. 120.
    Brodelius P (1978) Industrial applications of immobilized biocatalysts. In: Adv. Biochem. Eng, vol 10. Springer, Berlin, pp 75–129.  https://doi.org/10.1007/BFb0004472CrossRefGoogle Scholar
  121. 121.
    Panesar PS, Kumari S, Panesar R (2010) Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res (2010):473137.  https://doi.org/10.4061/2010/473137CrossRefGoogle Scholar
  122. 122.
    Griffiths MW, Muir DD, Phillips JD (1979) Thermal stable beta-galactosidase, US4332895Google Scholar
  123. 123.
    NIIR Board of Consultants & Engineers (2005) Enzymes bio-technology handbook. Asia Pacific Business Press, DelhiGoogle Scholar
  124. 124.
    Kidd PM (2007) Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev 12:207–227PubMedGoogle Scholar
  125. 125.
    Peretti N, Marcil V, Drouin E, Levy E (2005) Mechanisms of lipid malabsorption in cystic fibrosis: the impact of essential fatty acids deficiency. Nutr Metab 2:11–29.  https://doi.org/10.1186/1743-7075-2-11CrossRefGoogle Scholar
  126. 126.
    C. Fibrosis Foundation, Patient registry annual data report 2015 (2015) https://www.cff.org/Our-Research/CF-Patient-Registry/2015-Patient-Registry-Annual-Data-Report.pdf. Accessed 28 Jan 2019
  127. 127.
    Gallotto R, Loring GL, Gary K, Park ES, Brown DJ, Schoevaart WRK, Van Vliet MCA (2017) Enteral feeding device and related methods of use, US 20170105903Google Scholar
  128. 128.
    Margolin AL (2013) Methods, compositions, and devices for supplying dietary fatty acid needs, WO 2013123139A8Google Scholar
  129. 129.
    Center for Food Safety and Applied Nutrition (2012) Environmental Decisions - Environmental Decision Memo for Food Contact Notification No. 001190 2–5. https://wayback.archive-it.org/7993/20171030193105/https://www.fda.gov/Food/IngredientsPackagingLabeling/EnvironmentalDecisions/ucm443618.htm. Accessed 28 Jan 2019
  130. 130.
    Relizorb (Immobilized lipase cartridge) - Formulas, (n.d.). https://www.relizorb.com/docs/pdfs/Compatible-Formulas-and-Pumps.pdf. Accessed 28 Jan 2019
  131. 131.
    Freedman S, Orenstein D, Black P, Brown P, McCoy K, Stevens J, Grujic D, Clayton R (2017) Increased fat absorption from enteral formula through an in-line digestive cartridge in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 65:97–101.  https://doi.org/10.1097/MPG.0000000000001617CrossRefPubMedGoogle Scholar
  132. 132.
    Hosu O, Mirel S, Săndulescu R, Cristea C (2017) Minireview: smart tattoo, microneedle, point-of-care, and phone-based biosensors for medical screening, diagnosis, and monitoring. Anal Lett 52:78–92.  https://doi.org/10.1080/00032719.2017.1391826CrossRefGoogle Scholar
  133. 133.
    Habimana J d D, Ji J, Sun X (2018) Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics. Anal Lett 0:1–34.  https://doi.org/10.1080/00032719.2018.1458104CrossRefGoogle Scholar
  134. 134.
    Serban S, Danet AF, El Murr N (2004) Rapid and sensitive automated method for glucose monitoring in wine processing. J Agric Food Chem 52:5588–5592.  https://doi.org/10.1021/JF0494229CrossRefGoogle Scholar
  135. 135.
    Gazel N, Yildiz HB (2016) Enzyme-based biosensors in food industry via surface modifications. In: Surf. Treat. Biol. Chem. Phys. Appl. Wiley, Weinheim, pp 227–252.  https://doi.org/10.1002/9783527698813.ch7.CrossRefGoogle Scholar
  136. 136.
    Verma ML (2017) Nanobiotechnology advances in enzymatic biosensors for the Agri-food industry. Environ Chem Lett 15:555–560.  https://doi.org/10.1007/s10311-017-0640-4CrossRefGoogle Scholar
  137. 137.
    Hart JP, Serban S, Jones LJ, Biddle N, Pittson R, Drago GA (2006) Selective and rapid biosensor integrated into a commercial hand-held instrument for the measurement of ammonium ion in sewage effluent. Anal Lett 39:1657–1667.  https://doi.org/10.1080/00032710600713545CrossRefGoogle Scholar
  138. 138.
    Global Test Strip Market Research Report- 2021 | MRFR (n.d.) https://www.marketresearchfuture.com/reports/test-strip-market-672. Accessed 28 Jan 2019
  139. 139.
    Rajangam B, Daniel DK, Krastanov AI (2018) Progress in enzyme inhibition based detection of pesticides. Eng Life Sci 18:4–19.  https://doi.org/10.1002/elsc.201700028CrossRefGoogle Scholar
  140. 140.
    Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183:2063–2083.  https://doi.org/10.1007/s00604-016-1858-8CrossRefGoogle Scholar
  141. 141.
    Pohanka M (2013) Cholinesterases in biorecognition and biosensors construction: a review. Anal Lett 46:1849–1868.  https://doi.org/10.1080/00032719.2013.780240CrossRefGoogle Scholar
  142. 142.
    Martinkova P, Kostelnik A, Valek T, Pohanka M (2017) Main streams in the construction of biosensors and their applications. Int J Electrochem Sci 12:7386–7403.  https://doi.org/10.20964/2017.08.02CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Purolite, Unit D, Llantrisant Business ParkLlantrisantUK

Personalised recommendations