Advertisement

In Situ Immobilization of Enzymes in Biomimetic Silica

  • Erienne Jackson
  • Sonali Correa
  • Lorena BetancorEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2100)

Abstract

In this chapter we describe different strategies for enzyme immobilization in biomimetic silica nanoparticles. Synthesis of this type of support is performed under mild and biocompatible conditions and has been proven suitable for the immobilization and stabilization of a range of enzymes and enzymatic systems in nanostructured particles. Immobilization occurs by entrapment while the silica matrix is formed via catalysis of a polyamine molecule and the presence of silicic acid. Parameters such as enzyme, polyamine molecule, or source of Si concentration have been tailored in order to maximize enzymatic loads, stabilities, and specific activities of the catalysts. We provide different approaches for the immobilization and co-immobilization of enzymes that could be potentially extensible to other biocatalysts.

Key words

Biomimetic silica Enzyme immobilization Entrapment 

References

  1. 1.
    Krasňan V, Stloukal R, Rosenberg M, Rebroš M (2016) Immobilization of cells and enzymes to LentiKats®. Appl Microbiol Biotechnol 100:2535–2553CrossRefGoogle Scholar
  2. 2.
    Monier M, Youssef I, Abdel-Latif DA (2018) Synthesis of photo-responsive chitosan-cinnamate for efficient entrapment of β-galactosidase enzyme. React Funct Polym 124:129–138CrossRefGoogle Scholar
  3. 3.
    Zdarta J, Meyer A, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8:92–119CrossRefGoogle Scholar
  4. 4.
    Cazaban D, Wilson L, Betancor L (2017) Lipase immobilization on siliceous supports: application to synthetic reactions. Curr Org Chem 21:96–103CrossRefGoogle Scholar
  5. 5.
    Ronda L, Bruno S, Campanini B, Mozzarelli A, Abbruzzetti S, Cupane A, Levantino M, Bettati S (2015) Immobilization of proteins in silica gel: biochemical and biophysical properties. Curr Org Chem 19:1653–1668CrossRefGoogle Scholar
  6. 6.
    Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107CrossRefGoogle Scholar
  7. 7.
    Lechner C, Becker C (2015) Silaffins in silica biomineralization and biomimetic silica precipitation. Mar Drugs 13:5297–5333CrossRefGoogle Scholar
  8. 8.
    Yang SH (2013) Biomimetic silica nanostructures on the surface, controlled by polyvalent counteranions. Solid State Sci 23:1–7CrossRefGoogle Scholar
  9. 9.
    Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572CrossRefGoogle Scholar
  10. 10.
    Cazaban D, Illanes A, Wilson L, Betancor L (2018) Bio-inspired silica lipase nanobiocatalysts for the synthesis of fatty acid methyl esters. Process Biochem 74:86–93CrossRefGoogle Scholar
  11. 11.
    Patel SKS, Otari SV, Chan Kang Y, Lee J-K (2017) Protein–inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in xylulose production. RSC Adv 7:3488–3494CrossRefGoogle Scholar
  12. 12.
    Johnson GR, Luckarift HR (2017) Enzyme stabilization via bio-templated silicification reactions. Methods Mol Biol 1504:61–73CrossRefGoogle Scholar
  13. 13.
    Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22:211–213CrossRefGoogle Scholar
  14. 14.
    López-Gallego F, Jackson E, Betancor L (2017) Heterogeneous systems biocatalysis: the path to the fabrication of self-sufficient artificial metabolic cells. Chem Eur J 19:17841–17849CrossRefGoogle Scholar
  15. 15.
    Betancor L, Johnson GR, Luckarift HR (2013) Stabilized laccases as heterogeneous bioelectrocatalysts. ChemCatChem 5:46–60CrossRefGoogle Scholar
  16. 16.
    Jackson E, Ferrari M, Cuestas-Ayllon C, Fernández-Pacheco R, Perez-Carvajal J, De La Fuente JM, Grazú V, Betancor L (2015) Protein-templated biomimetic silica nanoparticles. Langmuir 31:3687–3695CrossRefGoogle Scholar
  17. 17.
    Zhou L, Wang C, Jiang Y, Gao J (2013) Immobilization of papain in biosilica matrix and its catalytic property. Chinese J Chem Eng 21:670–675CrossRefGoogle Scholar
  18. 18.
    Li H, Xiao W, Xie P, Zheng L (2018) Co-immobilization of enoate reductase with a cofactor-recycling partner enzyme. Enzym Microb Technol 109:66–73CrossRefGoogle Scholar
  19. 19.
    Berne C, Betancor L, Luckarift HR, Spain JC (2006) Application of a microfluidic reactor for screening cancer prodrug activation using silica-immobilized nitrobenzene nitroreductase. Biomacromolecules 7:2631–2636CrossRefGoogle Scholar
  20. 20.
    Henley JP, Sadana A (1985) Categorization of enzyme deactivations using a series-type mechanism. Enzym Microb Technol 7:50–60CrossRefGoogle Scholar
  21. 21.
    Li Y, Llewellyn NM, Giri R, Huang F, Spencer JB (2005) Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem Biol 12:665–675CrossRefGoogle Scholar
  22. 22.
    Llewellyn NM, Spencer JB (2008) Chemoenzymatic acylation of aminoglycoside antibiotics. Chem Commun 3786–3788Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Erienne Jackson
    • 1
  • Sonali Correa
    • 1
  • Lorena Betancor
    • 1
    Email author
  1. 1.Laboratorio de Biotecnología, Facultad de IngenieríaUniversidad ORT UruguayMontevideoUruguay

Personalised recommendations