Advertisement

MAIT Cells pp 83-94 | Cite as

In Situ Detection of MAIT Cells and MR1-Expressing Cells in Tissue Biopsies Utilizing Immunohistochemistry

  • Anna Gibbs
  • Michal J. Sobkowiak
  • Johan K. Sandberg
  • Annelie TjernlundEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2098)

Abstract

The mucosa-associated invariant T (MAIT) cells are innate-like T cells that recognize microbial vitamin B2 metabolites presented via MR1, a MHC-I-related protein. MAIT cells are abundant in blood and mucosa, where they display a broad range of functions. Spatial distribution of cells and their proximity to other cells, including infected cells and antigen presenting cells, are crucial components of cell-mediated immunity. Here we describe techniques to detect MAIT cells and MR1-expressing cells in situ, which enable the visualization, distribution, and localization of these cells within their histological context. We provide specific protocols and describe potential advantages and limitations for each of the presented methodologies for studying MAIT cells in human tissues.

Key words

MAIT cells MR1 In situ detection Immunohistochemistry Immunofluorescence Fixation Antibodies and microscopy 

Notes

Acknowledgments

This work was supported by grants to A.G. from Swedish Physicians against AIDS Foundation, the Swedish Society of Medicine, Tore Nilsons Research Foundation for Medical Research, and the Sigurd and Elsa Goljes Memorial Fund. J.K.S. was supported by grants from the Swedish Research Council (2016-03052), the Swedish Cancer Society (CAN 2017/777), the Swedish Heart-Lung Foundation (20180675), and the US National Institutes of Health (R01DK108350). A.T. was supported by grants from the Clas Groschinsky Minnesfond, Magnus Bergvalls Stiftelse, and the Swedish Society of Medicine.

References

  1. 1.
    Le Bourhis L, Mburu YK, Lantz O (2013) MAIT cells, surveyors of a new class of antigen: development and functions. Curr Opin Immunol 25:174–180CrossRefGoogle Scholar
  2. 2.
    Garner LC, Klenerman P, Provine NM (2018) Insights into mucosal-associated invariant T cell biology from studies of invariant natural killer T cells. Front Immunol 9:1478CrossRefGoogle Scholar
  3. 3.
    Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, Kang YH, Walker LJ, Hansen TH, Willberg CB, Klenerman P (2015) MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 8:429–440CrossRefGoogle Scholar
  4. 4.
    Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Core M, Sleurs D, Serriari NE, Treiner E, Hivroz C, Sansonetti P, Gougeon ML, Soudais C, Lantz O (2013) MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog 9:e1003681CrossRefGoogle Scholar
  5. 5.
    Dias J, Leeansyah E, Sandberg JK (2017) Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A 114:E5434–E5443CrossRefGoogle Scholar
  6. 6.
    Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M, Levy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Huang S, Rottman M, Soudais C, Lantz O (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11:701–708CrossRefGoogle Scholar
  7. 7.
    Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O (2009) Stepwise development of MAIT cells in mouse and human. PLoS Biol 7:e54CrossRefGoogle Scholar
  8. 8.
    Huang S, Martin E, Kim S, Yu L, Soudais C, Fremont DH, Lantz O, Hansen TH (2009) MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc Natl Acad Sci U S A 106:8290–8295CrossRefGoogle Scholar
  9. 9.
    Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, Eckle SB, Uldrich AP, Birkinshaw RW, Patel O, Kostenko L, Meehan B, Kedzierska K, Liu L, Fairlie DP, Hansen TH, Godfrey DI, Rossjohn J, McCluskey J, Kjer-Nielsen L (2013) Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med 210:2305–2320CrossRefGoogle Scholar
  10. 10.
    Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169CrossRefGoogle Scholar
  11. 11.
    McWilliam HE, Villadangos JA (2018) MR1 antigen presentation to MAIT cells: new ligands, diverse pathways? Curr Opin Immunol 52:108–113CrossRefGoogle Scholar
  12. 12.
    Gibbs A, Leeansyah E, Introini A, Paquin-Proulx D, Hasselrot K, Andersson E, Broliden K, Sandberg JK, Tjernlund A (2017) MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol 10:35–45CrossRefGoogle Scholar
  13. 13.
    Sobkowiak MJ, Davanian H, Heymann R, Gibbs A, Emgard J, Dias J, Aleman S, Kruger-Weiner C, Moll M, Tjernlund A, Leeansyah E, Sallberg Chen M, Sandberg JK (2019) Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17. Eur J Immunol 49:133–143CrossRefGoogle Scholar
  14. 14.
    Gibbs A, Buggert M, Edfeldt G, Ranefall P, Introini A, Cheuk S, Martini E, Eidsmo L, Ball TB, Kimani J, Kaul R, Karlsson AC, Wahlby C, Broliden K, Tjernlund A (2018) Human immunodeficiency virus-infected women have high numbers of CD103−CD8+ T cells residing close to the basal membrane of the ectocervical epithelium. J Infect Dis 218:453–465CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Koos B, Kamali-Moghaddam M, David L, Sobrinho-Simoes M, Dimberg A, Nilsson M, Wahlby C, Soderberg O (2015) Next-generation pathology—surveillance of tumor microecology. J Mol Biol 427:2013–2022CrossRefGoogle Scholar
  17. 17.
    Steinbach K, Vincenti I, Merkler D (2018) Resident-memory T cells in tissue-restricted immune responses: for better or worse? Front Immunol 9:2827CrossRefGoogle Scholar
  18. 18.
    Wilk MM, Mills KHG (2018) CD4 TRM cells following infection and immunization: implications for more effective vaccine design. Front Immunol 9:1860CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Anna Gibbs
    • 1
  • Michal J. Sobkowiak
    • 2
  • Johan K. Sandberg
    • 2
  • Annelie Tjernlund
    • 1
    Email author
  1. 1.Department of Medicine Solna, Division of Infectious Diseases, Center for Molecular MedicineKarolinska Institutet, Karolinska University HospitalStockholmSweden
  2. 2.Department of Medicine, Center for Infectious MedicineKarolinska InstitutetStockholmSweden

Personalised recommendations