Advertisement

Identification of Cell Surface Targets for CAR T Cell Immunotherapy

  • Diana C. DeLucia
  • John K. LeeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2097)

Abstract

Immunotherapy has become a prominent approach for the treatment of cancer. Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in oncology. However, the identification of cell surface antigens unique to tumor cells against which CAR T cells can be engineered has historically been challenging and not well documented in solid tumors. Here, we describe a generalized method to construct a cell subtype-specific surface antigen profile (i.e., surfaceome) from cell lines and identify high-confidence antigens as effective targets for CAR T cell therapy by integrating transcriptomics and cell surface proteomics. This method is widely applicable to all therapies utilizing CAR T cells, such as cancer, as well as infectious and autoimmune diseases.

Keywords

Cell surface antigens Chimeric antigen receptor CAR T cell RNA sequencing Transcriptomics Proteomics Mass spectrometry 

Notes

Acknowledgments

We thank the UCLA Technology Center for Genomics & Bioinformatics and the UCLA Proteomics Research Center for providing assistance with the workflows. This work was supported by the Department of Defense Prostate Cancer Research Program Physician Research Award (W81XWH-17-1-0129) and a Prostate Cancer Young Investigator Award to J.K.L.

References

  1. 1.
    Chaplin DD (2006) 1. Overview of the human immune response. J Allergy Clin Immunol 117(2 Suppl Mini-Primer):S430–S435.  https://doi.org/10.1016/j.jaci.2005.09.034CrossRefPubMedGoogle Scholar
  2. 2.
    Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398.  https://doi.org/10.1158/2159-8290.CD-12-0548CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273CrossRefGoogle Scholar
  4. 4.
    Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12(1):3–13.  https://doi.org/10.1006/scbi.2001.0404CrossRefPubMedGoogle Scholar
  5. 5.
    Hale M, Mesojednik T, Romano Ibarra GS, Sahni J, Bernard A, Sommer K, Scharenberg AM, Rawlings DJ, Wagner TA (2017) Engineering HIV-resistant, anti-HIV chimeric antigen receptor T cells. Mol Ther 25(3):570–579.  https://doi.org/10.1016/j.ymthe.2016.12.023CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391(6665):397–401.  https://doi.org/10.1038/34929CrossRefPubMedGoogle Scholar
  7. 7.
    Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG (2012) Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 61(7):953–962.  https://doi.org/10.1007/s00262-012-1254-0CrossRefGoogle Scholar
  8. 8.
    Fesnak AD, June CH, Levine BL (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 16(9):566–581.  https://doi.org/10.1038/nrc.2016.97CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ (2016) Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 3:16011.  https://doi.org/10.1038/mto.2016.11CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232.  https://doi.org/10.1038/nrg3185CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee JK, Bangayan NJ, Chai T, Smith BA, Pariva TE, Yun S, Vashisht A, Zhang Q, Park JW, Corey E, Huang J, Graeber TG, Wohlschlegel J, Witte ON (2018) Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci U S A 115(19):E4473–E4482.  https://doi.org/10.1073/pnas.1802354115CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, Schiess R, Schmidt A, Mirkowska P, Hartlova A, Van Eyk JE, Bourquin JP, Aebersold R, Boheler KR, Zandstra P, Wollscheid B (2015) A mass spectrometric-derived cell surface protein atlas. PLoS One 10(3):e0121314.  https://doi.org/10.1371/journal.pone.0121314CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Plaisier SB, Taschereau R, Wong JA, Graeber TG (2010) Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res 38(17):e169.  https://doi.org/10.1093/nar/gkq636CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, Pfeil J, Narkizian J, Deran AD, Musselman-Brown A, Schmidt H, Amstutz P, Craft B, Goldman M, Rosenbloom K, Cline M, O’Connor B, Hanna M, Birger C, Kent WJ, Patterson DA, Joseph AD, Zhu J, Zaranek S, Getz G, Haussler D, Paten B (2017) Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol 35(4):314–316.  https://doi.org/10.1038/nbt.3772CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550.  https://doi.org/10.1186/s13059-014-0550-8CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Division of Clinical ResearchFred Hutchinson Cancer Research CenterSeattleUSA
  3. 3.Division of Medical Oncology, Department of MedicineUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations