Methods to Visualize Auxin and Cytokinin Signaling Activity in the Shoot Apical Meristem

  • Géraldine Brunoud
  • Carlos S. Galvan-Ampudia
  • Teva VernouxEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2094)


Visualizing the distribution of hormone signaling activity such as auxin and cytokinins is of key importance for understanding regulation of plant development and physiology. Live imaging and genetically encoded hormone biosensors and reporters allow monitoring the spatial and temporal distribution of these phytohormones. Here, we describe how to cultivate live shoot apical meristems after dissection for observation under the confocal microscope for up to 4 days. The shoot apical meristems are maintained on an appropriate medium allowing them to grow and initiate new organs at a frequency similar to plants grown on soil. Meristems expressing hormone biosensors and reporters allows following hormone signaling activity distribution at high spatiotemporal resolution without chemical fixation, an approach that that can also be applied to follow the dynamics of expression in vivo of any fluorescent marker.

Key words

Shoot apical meristem Phytohormones biosensors and reporters Live imaging Confocal microscopy 


  1. 1.
    Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688CrossRefGoogle Scholar
  2. 2.
    Pfeiffer A, Wenzl C, Lohmann JU (2017) Beyond flexibility: controlling stem cells in an ever-changing environment. Curr Opin Plant Biol 35:117–123CrossRefGoogle Scholar
  3. 3.
    Besnard F, Rafahi Y, Morin V, Marteaux B, Brunoud G, Chambrier P, Frédérique R, Mirabet V, Legrand J, Lainé S, Thévenon E, Farcote E, Cellier C, Das P, Bishopp A, Dumas R, Parcy F, Helariutta Y, Boudaoud A, Godin C, Traas J, Vernoux T (2013) Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 550:417–421Google Scholar
  4. 4.
    Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106CrossRefGoogle Scholar
  5. 5.
    Liao C, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D (2012) Reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12:207–210CrossRefGoogle Scholar
  6. 6.
    Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971PubMedPubMedCentralGoogle Scholar
  7. 7.
    Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472CrossRefGoogle Scholar
  8. 8.
    Muller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097CrossRefGoogle Scholar
  9. 9.
    Zürcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Müller B (2013) A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signalling network in plant. Plant Physiol 161:10066–11075CrossRefGoogle Scholar
  10. 10.
    Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602CrossRefGoogle Scholar
  11. 11.
    Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz E (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911CrossRefGoogle Scholar
  12. 12.
    Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Benette M, De Veylder L, Traas J (2011) The auxin signalling network translate dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508CrossRefGoogle Scholar
  13. 13.
    Adibi M, Yoshida S, Weijers D, Fleck C (2016) Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by combination of cytokinin signalling and self-organization. PLoS One 11:e0147830CrossRefGoogle Scholar
  14. 14.
    Liao C, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D (2015) Corrigendum: reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12:1098CrossRefGoogle Scholar
  15. 15.
    Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1163–2010CrossRefGoogle Scholar
  16. 16.
    Barbier de Reuille P, Robinson S, Smith RS (2015) Quantification cell shape and gene expression in the shoot apical meristem using MorphographX. Plant cell morphogenesis: methods and protocols. Methods Mol Biol 1080:121–134CrossRefGoogle Scholar
  17. 17.
    Fernandez R, Das P, Mirabet V, Moscardi E, Traas J, Verdeil J-L, Malanchain G, Godin C (2010) Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7:547–553CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Géraldine Brunoud
    • 1
  • Carlos S. Galvan-Ampudia
    • 1
  • Teva Vernoux
    • 1
    Email author
  1. 1.Laboratoire Reproduction et Développement des Plantes (RDP), Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRALyonFrance

Personalised recommendations