A New Perspective on Cryotherapy: Pathogen Elimination Using Plant Shoot Apical Meristem via Cryogenic Techniques

  • Ergun KayaEmail author
  • Selin Galatali
  • Sevinc Guldag
  • Onur Celik
Part of the Methods in Molecular Biology book series (MIMB, volume 2094)


Plant pathogens cause different diseases on crops and industrial plant species that result in economic losses. Pathogen-free plant material has usually been obtained by traditional procedures such as meristem culture, thermotherapy, and chemotherapy. However, there are many limitations of these procedures such as mechanical challenges of meristem excision and low regeneration rate, low resistance to high temperatures, phytotoxicity, and mutagenic effects of the chemicals used in the procedures. Cryotherapy is a newly developed biotechnological tool that has been very effective in virus elimination from economically important plant species. This tool has overcome the abovementioned limitations. This chapter aims to highlight the importance of the cryogenic procedures (vitrification, encapsulation-vitrification, droplet vitrification, two-step freezing, dehydration, encapsulation-dehydration) in order to generate virus-free germplasm.

Key words

Plant biotechnology Dehydration Liquid nitrogen Plant viruses Vitrification 


  1. 1.
    Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lazarowitz SD (2006) Plant viruses. In: Fields BN, Knipe DM (eds) Fields virology, 5th edn. Lippincott, Williams & Wilkins Publishers, Philadelphia, PA, pp 641–706Google Scholar
  3. 3.
    Wren JD, Roossinck MJ, Nelson RS, Scheets K, Palmer MW, Melcher U (2006) Plant virus biodiversity and ecology. PLoS Biol 4:80CrossRefGoogle Scholar
  4. 4.
    Hogenhout SA, Ammar E, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Faccioli VC, Marani F (1998) Virus elimination by meristem tip culture and tip micrografting. In: Hadidi A et al (eds) Plant virus disease control. American Phytopathological Society, Saint Paul, MN, pp 346–380Google Scholar
  6. 6.
    Maliogka VI, Skiada FG, Eleftheriou EP, Katis NI (2009) Elimination of a new ampelovirus (GLRaV-Pr) and Grapevine rupestris stem pitting associated virus (GRSPaV) from two Vitis vinifera cultivars combining in vitro thermotherapy with shoot tip culture. Sci Hortic 123:280–282CrossRefGoogle Scholar
  7. 7.
    Benson EE (2007) Cryopreservation of shoot-tips and meristems. In: Day JG, Pennington MW (eds) Cryopreservation and freezing-drying protocols, methods in molecular biology. Humana Press, Totowa, NJ, pp 121–132Google Scholar
  8. 8.
    Wang QC, Cuellar WJ, Rajama ML, Hiraka Y, Valkonen JPT (2008) Combined thermotherapy and cryotherapy for virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips to efficient production of virus-free plants. Mol Plant Pathol 9:237–250PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wang MR, Li BQ, Feng CH, Wang QC (2016) Culture of shoot tips from adventitious shoots can eradicate apple stem pitting virus but fails in apple stem grooving virus. Plant Cell Tissue Organ Cult 125:283–291CrossRefGoogle Scholar
  10. 10.
    Hu GJ, Dong Y, Zhang Z, Fan X, Ren F, Zhou J (2015) Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell Tissue Organ Cult 121:435–443CrossRefGoogle Scholar
  11. 11.
    Parker WB (2005) Metabolism and antiviral activity of ribavirin. Virus Res 107:165–171PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Skiada FG, Maliogka VI, Katis VI, Eleftheriou EP (2013) Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two vitis vinifera cultivars by in vitro chemotherapy. Eur J Plant Pathol 135:407–414CrossRefGoogle Scholar
  13. 13.
    Wang QC, Valkonen JPT (2008) Elimination of two synergistically interacting viruses from sweet potato using shoot tip culture and cryotherapy. J Virol Methods 154:135–145PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Cai BH, Zhang JY, Qu SC, Gao ZH, Quiao YS, Zhang Z, Zhu F (2008) Preliminary study on the elimination of strawberry mild yellow edge virus from in vitro shoot tips of strawberry cv. Meihou by vitrification cryopreservation. J Fruit Sci 25:872–876Google Scholar
  15. 15.
    Wang QC, Valkonen JPT (2009) Improved recovery of cryotherapy-treated shoot tips following thermotherapy of in vitro-grown stock shoots of raspberry (Rubus idaeus L.). CryoLetters 30:171–182Google Scholar
  16. 16.
    Yi JY, Lee GA, Jeong JW, Lee SY, Lee YG (2014) Elimination potato virus Y (PVY) and potato leaf roll virus (PLRV) using cryotherapy of in vitro grown potato shoot tips. Korean J Crop Sci 59:498–504CrossRefGoogle Scholar
  17. 17.
    Pathirana R, McLachlan A, Hedderley D, Carra A, Carimi F, Panis B (2015) Removal of leafroll viruses from infected grapevine plants by droplet vitrification. Acta Hortic 1083:491–498CrossRefGoogle Scholar
  18. 18.
    Li BQ, Feng CH, Hu LY, Wang MR, Wang QC (2016) Shoot tip culture and cryopreservation for eradication of apple stem pitting virus (ASPV) and apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’. Ann Appl Biol 168:142–150CrossRefGoogle Scholar
  19. 19.
    Waterworth HE, Hadidi A (1998) Economical losses due to plant viruses. In: Hadidi A et al (eds) Plant virus disease control. American Phytopathological Society, Saint Paul, MN, pp 1–13Google Scholar
  20. 20.
    Esquinas-Alca´ zar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat Rev Genet 6:946–953CrossRefGoogle Scholar
  21. 21.
    Kaya E, Yilmaz Gokdogan E (2015) Virus eradication from plants via novel biotechnological processes: one step freezing methods based on vitrification of cryotherapy technıques. Mugla J Sci Technol 1(2):34–40CrossRefGoogle Scholar
  22. 22.
    Helliot B, Panis B, Poumay Y, Swenen R, Lepoivre P, Frison E (2002) Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Rep 20:1117–1122CrossRefGoogle Scholar
  23. 23.
    Ding F, Jin S, Hong NI, Zhong Y, Cao Q, Yi G, Wang G (2008) Vitrification-cryopreservation, an efficient method for eliminating Candidatus Liberobacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Rep 27:241–250PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wang QC, Mawassi M, Li P, Gafny R, Sela I, Tanne E (2003) Elimination of Grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci 165:321–327CrossRefGoogle Scholar
  25. 25.
    Bayati S, Shams-Bakhsh M, Moieni A (2011) Elimination of Grapevine Virus A (GVA) by cryotherapy and electrotherapy. J Agr Sci Technol 13:443–450Google Scholar
  26. 26.
    Wang Q, Liu Y, Xie Y, You M (2006) Cryotherapy of potato shoot tips for efficient elimination of Potato leaf roll virus (PLRV) and Potato virus Y (PVY). Potato Res 49:119–129CrossRefGoogle Scholar
  27. 27.
    Brison M, de Boucaud MT, Pierronnet A, Dosba F (1997) Effect of cryopreservation on the sanitary state of a cv. Prunus rootstock experimentally contaminated with Plum Pox Potyvirus. Plant Sci 123:189–196CrossRefGoogle Scholar
  28. 28.
    Shin JH, Kang DK, Sohn JK (2013) Production of yam mosaic virus (ymv)-free Dioscorea opposita plants by cryotherapy of shoot-tips. Cryo Letters 34(2):149–157PubMedPubMedCentralGoogle Scholar
  29. 29.
    Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433CrossRefGoogle Scholar
  30. 30.
    Mazur P (1984) Freezing of living cells: mechanisms and applications. Am J Physiol Cell Physiol 247:125–142CrossRefGoogle Scholar
  31. 31.
    Meryman HT, William RT, Douglas MSTJ (1977) Freezing injury 2solution effects and its prevention by natural or artificial cryopreservation. Cryobiology 14:287–302PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Engelmann F (1997) In vitro conservation methods. In: Ford-Lloyd BV, Newburry JH, Callow JA (eds) Biotechnology and plant genetic resources: conservation and use. CABI, Wallingford, pp 119–162Google Scholar
  33. 33.
    Ozudogru EA, Capuana M, Kaya E, Panis B, Lambardi M (2010) Cryopreservation of Fraxinus excelsior L. embryogenic callus by one-step freezing and slow cooling techniques. CryoLetters 31(1):63–75PubMedPubMedCentralGoogle Scholar
  34. 34.
    Withers LA, Engelmann F (1998) In vitro conservation of plant genetic resources. In: Altman A (ed) Biotechnology in agriculture. Marcel Dekker Inc., New York, pp 57–88Google Scholar
  35. 35.
    Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Burke MJ (1986) The glass state and survival of anhydrous biological systems. In: Leopold AC (ed) Membrane, metabolism and dry organisms. Cornell University Press, Ithaca, NY, pp 358–364Google Scholar
  37. 37.
    Fahy GM, Levy DI, Ali SE (1987) Some emerging principles underlying the physical properties, biological actions and utility of vitrification solutions. Cryobiology 24:196–213PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kaya E, Alves A, Rodrigues L, Jenderek M, Hernandez-Ellis M, Ozudogru A, Ellis D (2013) Cryopreservation of eucalyptus genetic resources. CryoLetters 34(6):608–618PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ozudogru EA, Kaya E (2012) Cryopreservation of Thymus cariensis and T. vulgaris shoot tips: comparison of three vitrification-based methods. CryoLetters 33(5):363–375PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ozudogru EA, Kaya E, Kirdok LM (2011a) Comparison of different PVS2-based procedures for cryopreservation of Thymus spp. European Cooperation in Science and Technology, Food and Agriculture, Cryoplanet, COST Action 871:86–92Google Scholar
  41. 41.
    Ozudogru EA, Kirdok E, Kaya E, Capuana M, Benelli C, Engelmann F (2011b) Cryopreservation of redwood (Sequoia sempervirens (D. Don.) Endl.) in vitro buds using vitrification-based techniques. CryoLetters 32(2):99–110PubMedPubMedCentralGoogle Scholar
  42. 42.
    Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Steponkus PL, Langis R, Fujikawa S (1992) In: Steponkus PL (ed) Advances in low temperature biology, vol 1. JAI Press, Hamptomill, UK, pp 1–16Google Scholar
  44. 44.
    Sakai A, Kobayashi S, Oiyama I (1991) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb.) by a simple freezing method. Plant Sci 74:243–248CrossRefGoogle Scholar
  45. 45.
    Nishizawa S, Sakai A, Amano Y, Matuzawa T (1993) Cryopreservation of Asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification method. Plant Sci 91:67–73CrossRefGoogle Scholar
  46. 46.
    Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Reinhoud PJ (1996) Cryopreservation of tobacco suspension cells by vitrification. Doctoral Paper, Rijks University, Leiden, The NetherlandsGoogle Scholar
  48. 48.
    Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS/IPGRI, Tsukuba/Rome, pp 8–20Google Scholar
  49. 49.
    Kaya E (2016) Long-term germplasm conservation of two economical important Musa species via cryopreservation-dehydration technıque. Biological Diversity and Conservation 9(3):178–182Google Scholar
  50. 50.
    Kaya E, Souza FVD, Yılmaz Gökdoğan E, Ceylan M, Jenderek M (2016) Cryopreservation of citrus seed via dehydration followed by immersion in liquid nitrogen. Turk J Biol 41:242–248CrossRefGoogle Scholar
  51. 51.
    Berjak P, Farrant JM, Mycock DJ, Pammenter NW (1989) Homoiohydrous (recalcitrant) seeds: the enigma of their desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186:249–261Google Scholar
  52. 52.
    Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation vitrification method. CryoLetters 16:189–196Google Scholar
  53. 53.
    Dereuddre J, Hassen M, Blandin S, Kaminski M (1991) Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen: 2. Thermal analysis. CryoLetters 12:135–148Google Scholar
  54. 54.
    Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm-current research progress and applications. JIRCAS/IPGRI, Tsukuba/RomeGoogle Scholar
  55. 55.
    Schäfer-Menuhr A, Schumacher HM, Mix-Wagner G (1997) Long-term storage of old potato varieties by cryopreservation of shoot-tips in liquid nitrogen. Plant Genet Resour Newsletter 111(1):19–24Google Scholar
  56. 56.
    Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168(1):45–55CrossRefGoogle Scholar
  57. 57.
    Souza FVD, Kaya E, Vieira J, Hilo de Souza E, Amorim O, Skogerboe D, Matsumoto T, Alves C, Ledo S, Jenderek M (2015) Droplet-vitrification and morphohistological studies of cryopreserved shoot tips of cultivated and wild pineapple genotypes. Plant Cell Tissue Org Cult 124(2):351–360CrossRefGoogle Scholar
  58. 58.
    Kaya E, Souza FVD (2017) Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane (Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. In Vitro Cell Develop Biol Plant 53(4):410–417CrossRefGoogle Scholar
  59. 59.
    Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R, Petrillo MD, Luster DG (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu Rev Phytopathol 41:305–324PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Van Weemen BK, Schuurs AHWM (1971) Immunoassay using antigen-enzyme conjugates. FEBS Lett 15:232–236PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ward E, Foster SJ, Fraaije BA, McCartney HA (2004) Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Ann Appl Biol 145:1–16CrossRefGoogle Scholar
  62. 62.
    White EJ, Venter M, Hiten NF, Burger JT (2008) Modified Cetyltrimethylammonium bromide method improves robustness and versatility: the benchmark for plant RNA extraction. Biotechnol J 3(11):1424–1428PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kaya E (2015) Using reverse transcription-polymerase chain reaction (RT PCR) for determination of apple mosaic ilarvirus (ApMV) in Hazelnut (Corylus avellana L.) Cultivars. JSM Biochem Mol Biol 3(1):1011Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Ergun Kaya
    • 1
    Email author
  • Selin Galatali
    • 1
  • Sevinc Guldag
    • 1
  • Onur Celik
    • 1
  1. 1.Molecular Biology and Genetics Department, Faculty of ScienceMugla Sitki Kocman UniversityMuglaTurkey

Personalised recommendations