Advertisement

Regulatory Role of Phytohormones in Maintaining Stem Cells and Boundaries of Stem Cell Niches

  • Aqib Syed
  • Anwar HussainEmail author
  • Waheed Murad
  • Badshah Islam
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2094)

Abstract

Plants are multicellular organism composed of different types of cells. These all kinds of cells are formed from pluripotent stem cells present at different positions in plant called stem cell niches. All these stem cell niches and their boundaries are maintained by complex regulatory mechanism at molecular level involving different genes, cofactors, and phytohormones. In this chapter, we discussed the regulatory mechanism and models of stem cell maintenance, specifying their boundaries at different stem cell niches.

Key words

Stem cell niches Arabidopsis Cytokinin Auxin and jasmonic acid 

References

  1. 1.
    Aichinger E et al (2012) Plant stem cell niches. Annu Rev Plant Biol 63:615–636PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Satina S, Blakeslee AF, Avery AG (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am J Bot 27(10):895–905CrossRefGoogle Scholar
  3. 3.
    Stewart R, Dermen H (1970) Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Am J Bot:816–826CrossRefGoogle Scholar
  4. 4.
    Lyndon RF (1998) The shoot apical meristem: its growth and development. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem cell niches. Proc Natl Acad Sci 106(49):20984–20988PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Laux T (2003) The stem cell concept in plants: a matter of debate. Cell 113(3):281–283PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414(6859):98PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hake S, Vollbrecht E, Freeling M (1989) Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J 8(1):15–22PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Smith LG et al (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116(1):21–30PubMedPubMedCentralGoogle Scholar
  10. 10.
    Long JA et al (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379(6560):66PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Endrizzi K et al (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10(6):967–979PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Long JA, Barton MK (1998) The development of apical embryonic pattern in Arabidopsis. Development 125(16):3027–3035PubMedPubMedCentralGoogle Scholar
  13. 13.
    Brand U et al (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol 129(2):565–575PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jasinski S et al (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15(17):1560–1565PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Yanai O et al (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15(17):1566–1571PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Frugis G et al (2001) Overexpression of KNAT1 in lettuce shifts leaf determinate growth to a shoot-like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins. Plant Physiol 126(4):1370–1380PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Byrne ME et al (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408(6815):967PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chen H, Banerjee AK, Hannapel DJ (2004) The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38(2):276–284PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sakamoto T et al (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15(5):581–590PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    van der Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol 10(12):248PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Laux T et al (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122(1):87–96PubMedPubMedCentralGoogle Scholar
  22. 22.
    Mayer KF et al (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805–815PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lenhard M, Jürgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129(13):3195–3206PubMedPubMedCentralGoogle Scholar
  24. 24.
    Schoof H et al (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100(6):635–644PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Yadav RK, Tavakkoli M, Reddy GV (2010) WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors. Development 137(21):3581–3589PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Nakajima K et al (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413(6853):307PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Leibfried A et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438(7071):1172PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Busch W et al (2010) Transcriptional control of a plant stem cell niche. Dev Cell 18(5):841–853CrossRefGoogle Scholar
  29. 29.
    McConnell JR, Barton MK (1995) Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of shoot apical meristems. Genesis 16(4):358–366Google Scholar
  30. 30.
    Moussian B et al (1998) Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J 17(6):1799–1809PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tucker MR et al (2008) Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135(17):2839–2843PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Liu Q et al (2009) The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J 58(1):27–40PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mallory AC et al (2009) Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene silencing. PLoS Genet 5(9):e1000646PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zhu H et al (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145(2):242–256PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Clark SE, Running MP, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121(7):2057–2067Google Scholar
  36. 36.
    Ito Y et al (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313(5788):842–845PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lenhard M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130(14):3163–3173PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Katsir L et al (2011) Peptide signaling in plant development. Curr Biol 21(9):R356–R364PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kinoshita A et al (2010) RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137(22):3911–3920PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yoshida S, Mandel T, Kuhlemeier C (2011) Stem cell activation by light guides plant organogenesis. Genes Dev 25(13):1439–1450PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    van den Berg C et al (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390(6657):287PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wildwater M et al (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123(7):1337–1349PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sarkar AK et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446(7137):811CrossRefGoogle Scholar
  44. 44.
    Stahl Y et al (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19(11):909–914PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sabatini S et al (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17(3):354–358PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Levesque MP et al (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4(5):e143PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cui H et al (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316(5823):421–425PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Barton M (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 341(1):95–113PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wiśniewska J et al (2006) Polar PIN localization directs auxin flow in plants. Science 312(5775):883–883PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Galinha C et al (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449(7165):1053PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Matsuzaki Y et al (2010) Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329(5995):1065–1067PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Blilou I et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wang J-W et al (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci 107(26):12046–12051PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Etchells JP, Turner SR (2010) The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137(5):767–774PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hirakawa Y et al (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci 105(39):15208–15213PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22(8):2618–2629PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Whitford R et al (2008) Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci 105(47):18625–18630PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Agusti J et al (2011) Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet 7(2):e1001312PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zhao C et al (2005) The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol 138(2):803–818PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schrader J et al (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40(2):173–187PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bishopp A et al (2011) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21(11):917–926PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ilegems M et al (2010) Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation. Development 137(6):975–984PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Carlsbecker A et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465(7296):316PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ko J-H et al (2004) Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135(2):1069–1083PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Sehr EM et al (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63(5):811–822PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Aqib Syed
    • 1
  • Anwar Hussain
    • 2
    Email author
  • Waheed Murad
    • 2
  • Badshah Islam
    • 3
  1. 1.Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life SciencesShandong UniversityJinanChina
  2. 2.Department of Botany, Garden CampusAbdul Wali Khan University MardanMardanPakistan
  3. 3.Department of Agriculture, Garden CampusAbdul Wali Khan University MardanMardanPakistan

Personalised recommendations