Skip to main content

Study of Cell-Type-Specific Chromatin Organization: In Situ Hi-C Library Preparation for Low-Input Plant Materials

  • Protocol
  • First Online:
Plant Epigenetics and Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2093))

Abstract

The three-dimensional folding of chromatin contributes to the control of genome functions in eukaryotes, including transcription, replication, chromosome segregation, and DNA repair. In recent decades, many cytological and molecular methods have provided profound structural insights into the hierarchical organization of plant chromatin. With the Hi-C (high-throughput chromosome conformation capture) technique, analyses of global chromatin organization in plants indicate considerable differences across species. However, our knowledge of how chromatin organization at a local level is connected to tissue-specific gene expression is rather limited. This problem can be tackled by performing fluorescence-activated sorting of fixed nuclei followed by Hi-C, which is tailored for a limited number of input nuclei. Here, we describe an approach of isolating Arabidopsis thaliana nuclei with defined endopolyploidy level and subsequent in situ Hi-C library preparation for low-input plant materials. In principle, this method can be applied to any types of fluorescence-labeled nuclei, offering researchers a useful tool to unveil temporal and spatial chromatin dynamics in 3D in a tissue-specific context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17(11):661–678. https://doi.org/10.1038/nrg.2016.112

    Article  CAS  PubMed  Google Scholar 

  2. Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O’Shea CC, Park PJ, Ren B, Politz JCR, Shendure J, Zhong S, Network DN (2017) The 4D nucleome project. Nature 549(7671):219–226. https://doi.org/10.1038/nature23884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49(5):773–782. https://doi.org/10.1016/j.molcel.2013.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spielmann M, Lupianez DG, Mundlos S (2018) Structural variation in the 3D genome. Nat Rev Genet 19(7):453–467. https://doi.org/10.1038/s41576-018-0007-0

    Article  CAS  PubMed  Google Scholar 

  5. Lieberman-Aiden E, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289

    Article  CAS  Google Scholar 

  6. Belton JM, Mccord RP, Gibcus J, Naumova N, Ye Z, Dekker J (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58(3):268–276

    Article  CAS  Google Scholar 

  7. Jibran R, Dzierzon H, Bassil N, Bushakra JM, Edger PP, Sullivan S, Finn CE, Dossett M, Vining KJ, VanBuren R, Mockler TC, Liachko I, Davies KM, Foster TM, Chagne D (2018) Chromosome-scale scaffolding of the black raspberry (Rubus occidentalis L.) genome based on chromatin interaction data. Hortic Res 5:8. https://doi.org/10.1038/s41438-017-0013-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lightfoot DJ, Jarvis DE, Ramaraj T, Lee R, Jellen EN, Maughan PJ (2017) Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biol 15(1):74. https://doi.org/10.1186/s12915-017-0412-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatriain M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):427–433. https://doi.org/10.1038/nature22043

    Article  CAS  PubMed  Google Scholar 

  10. Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, Carrere S, Caissard JC, Couloux A, Cottret L, Aury JM, Szecsi J, Latrasse D, Madoui MA, Francois L, Fu X, Yang SH, Dubois A, Piola F, Larrieu A, Perez M, Labadie K, Perrier L, Govetto B, Labrousse Y, Villand P, Bardoux C, Boltz V, Lopez-Roques C, Heitzler P, Vernoux T, Vandenbussche M, Quesneville H, Boualem A, Bendahmane A, Liu C, Le Bris M, Salse J, Baudino S, Benhamed M, Wincker P, Bendahmane M (2018) The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50(6):772–777. https://doi.org/10.1038/s41588-018-0110-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55(5):678–693. https://doi.org/10.1016/j.molcel.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  12. Dong P, Tu X, Chu PY, Lu P, Zhu N, Grierson D, Du B, Li P, Zhong S (2017) 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol Plant 10(12):1497–1509. https://doi.org/10.1016/j.molp.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  13. Dong Q, Li N, Li X, Yuan Z, Xie D, Wang X, Li J, Yu Y, Wang J, Ding B, Zhang Z, Li C, Bian Y, Zhang A, Wu Y, Liu B, Gong L (2018) Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. Plant J 94(6):1141–1156. https://doi.org/10.1111/tpj.13925

    Article  CAS  PubMed  Google Scholar 

  14. Feng S, Cokus SJ, Schubert V, Zhai J, Pellegrini M, Jacobsen SE (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 55(5):694–707. https://doi.org/10.1016/j.molcel.2014.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu C, Cheng YJ, Wang JW, Weigel D (2017) Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat Plants 3(9):742–748. https://doi.org/10.1038/s41477-017-0005-9

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Liu C, Roqueiro D, Grimm D, Schwab R, Becker C, Lanz C, Weigel D (2015) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25(2):246–256. https://doi.org/10.1101/gr.170332.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang M, Wang P, Lin M, Ye Z, Li G, Tu L, Shen C, Li J, Yang Q, Zhang X (2018) Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat Plants 4(2):90–97. https://doi.org/10.1038/s41477-017-0096-3

    Article  CAS  PubMed  Google Scholar 

  18. Zhu W, Hu B, Becker C, Dogan ES, Berendzen KW, Weigel D, Liu C (2017) Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol 18(1):157. https://doi.org/10.1186/s13059-017-1281-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sotelo-Silveira M, Chavez Montes RA, Sotelo-Silveira JR, Marsch-Martinez N, de Folter S (2018) Entering the next dimension: plant genomes in 3D. Trends Plant Sci 23(7):598–612. https://doi.org/10.1016/j.tplants.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  20. Borges F, Gardner R, Lopes T, Calarco JP, Boavida LC, Slotkin RK, Martienssen RA, Becker JD (2012) FACS-based purification of Arabidopsis microspores, sperm cells and vegetative nuclei. Plant Methods 8(1):44. https://doi.org/10.1186/1746-4811-8-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6(1):56–68. https://doi.org/10.1038/nprot.2010.175

    Article  CAS  PubMed  Google Scholar 

  22. Moreno-Romero J, Santos-Gonzalez J, Hennig L, Kohler C (2017) Applying the INTACT method to purify endosperm nuclei and to generate parental-specific epigenome profiles. Nat Protoc 12(2):238–254. https://doi.org/10.1038/nprot.2016.167

    Article  CAS  PubMed  Google Scholar 

  23. Weinhofer I, Kohler C (2014) Endosperm-specific chromatin profiling by fluorescence-activated nuclei sorting and ChIP-on-chip. Methods Mol Biol 1112:105–115. https://doi.org/10.1007/978-1-62703-773-0_7

    Article  CAS  PubMed  Google Scholar 

  24. Barow M (2006) Endopolyploidy in seed plants. BioEssays 28(3):271–281. https://doi.org/10.1002/bies.20371

    Article  CAS  PubMed  Google Scholar 

  25. Liu C (2017) In situ Hi-C library preparation for plants to study their three-dimensional chromatin interactions on a genome-wide scale. Methods Mol Biol 1629:155–166. https://doi.org/10.1007/978-1-4939-7125-1_11

    Article  CAS  PubMed  Google Scholar 

  26. Ferretti L, Sgaramella V (1981) Specific and reversible inhibition of the blunt end joining activity of the T4 DNA ligase. Nucleic Acids Res 9(15):3695–3705

    Article  CAS  Google Scholar 

  27. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148(3):458–472. https://doi.org/10.1016/j.cell.2012.01.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 757600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, N., Liu, C. (2020). Study of Cell-Type-Specific Chromatin Organization: In Situ Hi-C Library Preparation for Low-Input Plant Materials. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics . Methods in Molecular Biology, vol 2093. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0179-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0179-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0178-5

  • Online ISBN: 978-1-0716-0179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics