Pires ND, Grossniklaus U (2014) Different yet similar: evolution of imprinting in flowering plants and mammals. F1000Prime Rep 6:63
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Gehring M, Satyaki PR (2017) Endosperm and imprinting, inextricably linked. Plant Physiol 173:143–154
CAS
PubMed
CrossRef
Google Scholar
Plasschaert RN, Bartolomei MS (2014) Genomic imprinting in development, growth, behavior and stem cells. Development 141:1805–1813
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
John RM (2017) Imprinted genes and the regulation of placental endocrine function: pregnancy and beyond. Placenta 56:86–90
CAS
PubMed
CrossRef
Google Scholar
Pignatta D, Novitzky K, Satyaki PRV, Gehring M (2018) A variably imprinted epiallele impacts seed development. PLoS Genet 14:e1007469
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Bai F, Settles AM (2014) Imprinting in plants as a mechanism to generate seed phenotypic diversity. Front Plant Sci 5:780
PubMed
Google Scholar
Kappil MA, Green BB, Armstrong DA, Sharp AJ, Lambertini L, Marsit CJ, Chen J (2015) Placental expression profile of imprinted genes impacts birth weight. Epigenetics 10:842–849
PubMed
PubMed Central
CrossRef
Google Scholar
Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cassidy SB, Dykens E, Williams CA (2000) Prader-Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet 97:136–146
CAS
PubMed
CrossRef
Google Scholar
Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Satyaki PRV, Gehring M (2017) DNA methylation and imprinting in plants: machinery and mechanisms. Crit Rev Biochem Mol Biol 52:163–175
CAS
PubMed
CrossRef
Google Scholar
Klosinska M, Picard CL, Gehring M (2016) Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat Plants. 2:16145
Google Scholar
Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. CSH Perspect Biol 6:a018382
Google Scholar
Jullien PE, Berger F (2009) Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr Opin Plant Biol 12:637–642
CAS
PubMed
CrossRef
Google Scholar
Luo M, Taylor JM, Spriggs A, Zhang H, Wu X, Russell S, Singh M, Koltunow A (2011) A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet 7:e1002125
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chen C, Li T, Zhu S, Liu Z, Shi Z, Zheng X, Chen R, Huang J, Shen Y, Luo S, Wang L, Liu Q (2018) Characterization of imprinted genes in rice reveals conservation of regulation and imprinting with other plant species. Plant Physiol 177:1754–1771
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh C-T, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM (2011) Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23:4221–4233
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang M, Zhao H, Xie S, Chen J, Xu Y, Wang K, Zhao H, Guan H, Hu X, Jiao Y, Song W, Lai J (2011) Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc Natl Acad Sci U S A 108:20042–20047
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Waters AJ, Bilinski P, Eichten SR, Vaughn MW, Ross-Ibarra J, Gehring M, Springer NM (2013) Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species. Proc Natl Acad Sci U S A 110:19639–19644
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Xin M, Yang R, Li G, Chen H, Laurie J, Ma C, Wang D, Yao Y, Larkins BA, Sun Q, Yadegari R, Wang X, Ni Z (2013) Dynamic expression of imprinted genes associates with maternally controlled nutrient allocation during maize endosperm development. Plant Cell 25:3212–3227
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yang G, Liu Z, Gao L, Yu K, Feng M, Yao Y, Peng H, Hu Z, Sun Q, Ni Z, Xin M (2018) Genomic imprinting was evolutionarily conserved during wheat polyploidization. Plant Cell 30:37–47
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Florez-Rueda AM, Paris M, Schmidt A, Widmer A, Grossniklaus U, Städler T (2016) Genomic imprinting in the endosperm is systematically perturbed in abortive hybrid tomato seeds. Mol Biol Evol 33:2935–2946
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Roth M, Florez-Rueda AM, Paris M, Städler T (2018) Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. Plant J 95:1084–1101
CAS
PubMed
CrossRef
Google Scholar
Liu J, Li J, Liu HF, Fan SH, Singh S, Zhou XR, Hu ZY, Wang HZ, Hua W (2018) Genome-wide screening and analysis of imprinted genes in rapeseed (Brassica napus L.) endosperm. DNA Res 25:629–640
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Xu W, Dai M, Li F, Liu A (2014) Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean. Nucleic Acids Res 42:6987–6998
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hatorangan MR, Laenen B, Steige KA, Slotte T, Köhler C (2016) Rapid evolution of genomic imprinting in two species of the Brassicaceae. Plant Cell 28:1815–1827
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang M, Li N, He W, Zhang H, Yang W, Liu B (2016) Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. Plant J 85:424–436
CAS
PubMed
CrossRef
Google Scholar
Gehring M, Missirian V, Henikoff S (2011) Genomic analysis of parent-of-origin allelic expression in Arabidopsis thaliana seeds. PLoS One 6:e23687
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database Collaboration (2010) The sequence read archive. Nucleic Acids Res 39:D19–D21
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW, Gehring M (2014) Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife. 3:e03198
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
1001 Genomes Consortium (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491
CrossRef
CAS
Google Scholar
Hansen NF (2016) Variant calling from next generation sequence data. In: Mathé E, Davis S (eds) Statistical genomics, Meth Mol Biol, vol 1418. Humana, New York
CrossRef
Google Scholar
Kobayashi M, Ohyanagi H, Takanashi H, Asano A, Kudo T, Kajiya-Kanegae H, Nagano AJ, Tainaka H, Tokunaga T, Sazuka T, Iwata H, Tsutsumi N, Yano K (2017) Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data. DNA Res 24:397–405
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Christensen KA, Brunelli JP, Lambert MJ, DeKoning J, Phillips RB, Thorgaard GH (2013) Identification of single nucleotide polymorphisms from the transcriptome of an organism with a whole genome duplication. BMC Bioinformatics 14:325
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Castel SE, Levy-Moonshine A, Mohammadi P, Banks E, Lappalainen T (2015) Tools and best practices for data processing in allelic expression analysis. Genome Biol 16:195
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J, Yin L, Zhang R, Wu L, Zheng Y, Mao L (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26:1878–1900
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhuo Z, Lamont SJ, Abasht B (2017) RNA-seq analyses identify frequent allele specific expression and no evidence of genomic imprinting in specific embryonic tissues of chicken. Sci Rep 7:11944
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Moreno-Romero J, Jiang H, Santos-González J, Köhler C (2016) Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J 35:1298–1311
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brekke TD, Henry LA, Good JM (2016) Genomic imprinting, disrupted placental expression, and speciation. Evolution 70:2690–2703
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Schon MA, Nodine MD (2017) Widespread contamination of Arabidopsis embryo and endosperm transcriptome data sets. Plant Cell 29:608–617
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wang Z, Clark AG (2014) Using next-generation RNA sequencing to identify imprinted genes. Heredity 113:156–166
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci U S A 108:1755–1762
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C, Donoghue MTA, Spillane C, Nordborg M, Rehmsmeier M, Köhler C (2011) High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis endosperm. PLoS Genet 7:e1002126
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Anders S, Pyl PT, Huber W (2014) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Krueger F (2012) Trim Galore. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore
Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2011) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Cheng C, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J 89:789–804
CAS
CrossRef
PubMed
Google Scholar
Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ, Yeung EC, Hashimoto M, Fei J, Harada CM, Munoz MD, Le BH, Drews GN, Brady SM, Goldberg RB, Harada JJ (2013) Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci U S A 110:E435–E444
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gordon A (2010) Fastx toolkit. https://github.com/agordon/fastx_toolkit