Skip to main content

Identification and Comparison of Imprinted Genes Across Plant Species

Part of the Methods in Molecular Biology book series (MIMB,volume 2093)

Abstract

Genomic imprinting is a phenomenon that occurs in flowering plants and mammals, whereby a gene is expressed in a parent-of-origin-specific manner. Although imprinting has now been examined genome-wide in a number of species using RNA-seq, the analyses used to assess imprinting vary between studies, making consistent comparisons between species difficult. Here we present a simple, easy-to-use bioinformatic pipeline for imprinting analyses suitable for any tissue, including plant endosperm. All relevant scripts can be downloaded. As an illustrative example, we reanalyze published data from A. thaliana and Z. mays endosperm using the pipeline and then demonstrate how to use the results to assess the conservation of imprinting between these species. We also introduce the Plant Imprinting Database, a repository for published imprinting datasets in plants that can be used to view, compare, and download data.

Key words

  • Genomic imprinting
  • Plant Imprinting Database
  • Imprinting pipeline
  • Imprinting conservation

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-0716-0179-2_13
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-0716-0179-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pires ND, Grossniklaus U (2014) Different yet similar: evolution of imprinting in flowering plants and mammals. F1000Prime Rep 6:63

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  2. Gehring M, Satyaki PR (2017) Endosperm and imprinting, inextricably linked. Plant Physiol 173:143–154

    CAS  PubMed  CrossRef  Google Scholar 

  3. Plasschaert RN, Bartolomei MS (2014) Genomic imprinting in development, growth, behavior and stem cells. Development 141:1805–1813

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  4. John RM (2017) Imprinted genes and the regulation of placental endocrine function: pregnancy and beyond. Placenta 56:86–90

    CAS  PubMed  CrossRef  Google Scholar 

  5. Pignatta D, Novitzky K, Satyaki PRV, Gehring M (2018) A variably imprinted epiallele impacts seed development. PLoS Genet 14:e1007469

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  6. Bai F, Settles AM (2014) Imprinting in plants as a mechanism to generate seed phenotypic diversity. Front Plant Sci 5:780

    PubMed  Google Scholar 

  7. Kappil MA, Green BB, Armstrong DA, Sharp AJ, Lambertini L, Marsit CJ, Chen J (2015) Placental expression profile of imprinted genes impacts birth weight. Epigenetics 10:842–849

    PubMed  PubMed Central  CrossRef  Google Scholar 

  8. Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Cassidy SB, Dykens E, Williams CA (2000) Prader-Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet 97:136–146

    CAS  PubMed  CrossRef  Google Scholar 

  10. Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Satyaki PRV, Gehring M (2017) DNA methylation and imprinting in plants: machinery and mechanisms. Crit Rev Biochem Mol Biol 52:163–175

    CAS  PubMed  CrossRef  Google Scholar 

  12. Klosinska M, Picard CL, Gehring M (2016) Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat Plants. 2:16145

    Google Scholar 

  13. Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. CSH Perspect Biol 6:a018382

    Google Scholar 

  14. Jullien PE, Berger F (2009) Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr Opin Plant Biol 12:637–642

    CAS  PubMed  CrossRef  Google Scholar 

  15. Luo M, Taylor JM, Spriggs A, Zhang H, Wu X, Russell S, Singh M, Koltunow A (2011) A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet 7:e1002125

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  16. Chen C, Li T, Zhu S, Liu Z, Shi Z, Zheng X, Chen R, Huang J, Shen Y, Luo S, Wang L, Liu Q (2018) Characterization of imprinted genes in rice reveals conservation of regulation and imprinting with other plant species. Plant Physiol 177:1754–1771

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh C-T, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM (2011) Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23:4221–4233

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Zhang M, Zhao H, Xie S, Chen J, Xu Y, Wang K, Zhao H, Guan H, Hu X, Jiao Y, Song W, Lai J (2011) Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc Natl Acad Sci U S A 108:20042–20047

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Waters AJ, Bilinski P, Eichten SR, Vaughn MW, Ross-Ibarra J, Gehring M, Springer NM (2013) Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species. Proc Natl Acad Sci U S A 110:19639–19644

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  20. Xin M, Yang R, Li G, Chen H, Laurie J, Ma C, Wang D, Yao Y, Larkins BA, Sun Q, Yadegari R, Wang X, Ni Z (2013) Dynamic expression of imprinted genes associates with maternally controlled nutrient allocation during maize endosperm development. Plant Cell 25:3212–3227

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  21. Yang G, Liu Z, Gao L, Yu K, Feng M, Yao Y, Peng H, Hu Z, Sun Q, Ni Z, Xin M (2018) Genomic imprinting was evolutionarily conserved during wheat polyploidization. Plant Cell 30:37–47

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  22. Florez-Rueda AM, Paris M, Schmidt A, Widmer A, Grossniklaus U, Städler T (2016) Genomic imprinting in the endosperm is systematically perturbed in abortive hybrid tomato seeds. Mol Biol Evol 33:2935–2946

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Roth M, Florez-Rueda AM, Paris M, Städler T (2018) Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. Plant J 95:1084–1101

    CAS  PubMed  CrossRef  Google Scholar 

  24. Liu J, Li J, Liu HF, Fan SH, Singh S, Zhou XR, Hu ZY, Wang HZ, Hua W (2018) Genome-wide screening and analysis of imprinted genes in rapeseed (Brassica napus L.) endosperm. DNA Res 25:629–640

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Xu W, Dai M, Li F, Liu A (2014) Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean. Nucleic Acids Res 42:6987–6998

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Hatorangan MR, Laenen B, Steige KA, Slotte T, Köhler C (2016) Rapid evolution of genomic imprinting in two species of the Brassicaceae. Plant Cell 28:1815–1827

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Zhang M, Li N, He W, Zhang H, Yang W, Liu B (2016) Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. Plant J 85:424–436

    CAS  PubMed  CrossRef  Google Scholar 

  28. Gehring M, Missirian V, Henikoff S (2011) Genomic analysis of parent-of-origin allelic expression in Arabidopsis thaliana seeds. PLoS One 6:e23687

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database Collaboration (2010) The sequence read archive. Nucleic Acids Res 39:D19–D21

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  30. Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW, Gehring M (2014) Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife. 3:e03198

    Google Scholar 

  31. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  32. 1001 Genomes Consortium (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491

    CrossRef  CAS  Google Scholar 

  33. Hansen NF (2016) Variant calling from next generation sequence data. In: Mathé E, Davis S (eds) Statistical genomics, Meth Mol Biol, vol 1418. Humana, New York

    CrossRef  Google Scholar 

  34. Kobayashi M, Ohyanagi H, Takanashi H, Asano A, Kudo T, Kajiya-Kanegae H, Nagano AJ, Tainaka H, Tokunaga T, Sazuka T, Iwata H, Tsutsumi N, Yano K (2017) Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data. DNA Res 24:397–405

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Christensen KA, Brunelli JP, Lambert MJ, DeKoning J, Phillips RB, Thorgaard GH (2013) Identification of single nucleotide polymorphisms from the transcriptome of an organism with a whole genome duplication. BMC Bioinformatics 14:325

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  36. Castel SE, Levy-Moonshine A, Mohammadi P, Banks E, Lappalainen T (2015) Tools and best practices for data processing in allelic expression analysis. Genome Biol 16:195

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  37. Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J, Yin L, Zhang R, Wu L, Zheng Y, Mao L (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26:1878–1900

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  38. Zhuo Z, Lamont SJ, Abasht B (2017) RNA-seq analyses identify frequent allele specific expression and no evidence of genomic imprinting in specific embryonic tissues of chicken. Sci Rep 7:11944

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  39. Moreno-Romero J, Jiang H, Santos-González J, Köhler C (2016) Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J 35:1298–1311

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  40. Brekke TD, Henry LA, Good JM (2016) Genomic imprinting, disrupted placental expression, and speciation. Evolution 70:2690–2703

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  41. Schon MA, Nodine MD (2017) Widespread contamination of Arabidopsis embryo and endosperm transcriptome data sets. Plant Cell 29:608–617

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  42. Wang Z, Clark AG (2014) Using next-generation RNA sequencing to identify imprinted genes. Heredity 113:156–166

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci U S A 108:1755–1762

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  44. Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C, Donoghue MTA, Spillane C, Nordborg M, Rehmsmeier M, Köhler C (2011) High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis endosperm. PLoS Genet 7:e1002126

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Anders S, Pyl PT, Huber W (2014) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  46. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  47. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  48. Krueger F (2012) Trim Galore. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore

  49. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS, Lee CH, Nelson WD, Ploetz L, Singh S, Wensel A, Huala E (2011) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  50. Cheng C, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J 89:789–804

    CAS  CrossRef  PubMed  Google Scholar 

  51. Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ, Yeung EC, Hashimoto M, Fei J, Harada CM, Munoz MD, Le BH, Drews GN, Brady SM, Goldberg RB, Harada JJ (2013) Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci U S A 110:E435–E444

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  52. Gordon A (2010) Fastx toolkit. https://github.com/agordon/fastx_toolkit

Download references

Acknowledgments

We would like to thank Andy Nutter-Upham and Scott McCallum for their tireless work in building the imprinting database and Daniela Pignatta for initial contributions to database design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Gehring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Picard, C.L., Gehring, M. (2020). Identification and Comparison of Imprinted Genes Across Plant Species. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics . Methods in Molecular Biology, vol 2093. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0179-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0179-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0178-5

  • Online ISBN: 978-1-0716-0179-2

  • eBook Packages: Springer Protocols