Advertisement

Characterizing Enzymes of the Diphosphoinositol Polyphosphate Phosphohydrolase (DIPP) Family

  • Lucinda Winward
  • Rajagopal Sharada Kilari
  • Stephen T. SafranyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2091)

Abstract

The diphosphoinositol polyphosphate phosphohydrolases are a subset of the Nudix hydrolase family of enzymes. As such, they metabolize a wide range of substrates, including diphosphoinositol polyphosphates (inositol diphosphates, inositol pyrophosphates), dinucleotide phosphates, nucleosides as well as 5-phosphoribosyl 1-pyrophosphate and inorganic polyphosphate. Here, we describe protocols to optimize these enzymes, with consideration to buffer composition and sample preparation and how to analyze the metabolism of these substrates using high-performance liquid chromatography, giving advice where pitfalls are commonly encountered.

Key words

Inositol diphosphate Inositol pyrophosphate Nudix DIPP Diadenosine polyphosphate Polyphosphate 

References

  1. 1.
    Shears SB (2016) Towards pharmacological intervention in inositol pyrophosphate signalling. Biochem Soc Trans 44:191–196CrossRefGoogle Scholar
  2. 2.
    Padmanabhan U, Kilari RS, Winward LJ et al (2016) Chapter 5 Inositol diphosphates: an expanding repertoire of functions and regulation. In: Phytate destruction – consequences for precision animal nutrition. Wageningen Academic Publishers, Wageningen, pp 61–86CrossRefGoogle Scholar
  3. 3.
    Safrany ST, Caffrey JJ, Yang X et al (1999) Diphosphoinositol polyphosphates: the final frontier for inositide research? Biol Chem 380(7–8):945–951CrossRefGoogle Scholar
  4. 4.
    Safrany ST, Caffrey JJ, Yang X et al (1998) A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J 17(22):6599–6607CrossRefGoogle Scholar
  5. 5.
    Safrany ST, Ingram SW, Cartwright JL et al (1999) The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J Biol Chem 274(31):21735–21740CrossRefGoogle Scholar
  6. 6.
    Caffrey JJ, Safrany ST, Yang X et al (2000) Discovery of molecular and catalytic diversity among human diphosphoinositol-polyphosphate phosphohydrolases. An expanding Nudt family. J Biol Chem 275(17):12730–12736CrossRefGoogle Scholar
  7. 7.
    Leslie NR, McLennan AG, Safrany ST (2002) Cloning and characterisation of hAps1 and hAps2, human diadenosine polyphosphate-metabolising Nudix hydrolases. BMC Biochem 3(1):20CrossRefGoogle Scholar
  8. 8.
    Hidaka K, Caffrey JJ, Hua L et al (2002) An adjacent pair of human NUDT genes on chromosome X are preferentially expressed in testis and encode two new isoforms of diphosphoinositol polyphosphate phosphohydrolase. J Biol Chem 277(36):32730–32738CrossRefGoogle Scholar
  9. 9.
    Winward L, Whitfield WG, McLennan AG et al (2010) Oxidation of the diphosphoinositol polyphosphate phosphohydrolase-like Nudix hydrolase Aps from Drosophila melanogaster induces thermolability--A possible regulatory switch? Int J Biochem Cell Biol 42(7):1174–1181CrossRefGoogle Scholar
  10. 10.
    Ingram SW, Stratemann SA, Barnes LD (1999) Schizosaccharomyces pombe Aps1, a diadenosine 5′,5′ ″-P1, P6- hexaphosphate hydrolase that is a member of the nudix (MutT) family of hydrolases: cloning of the gene and characterization of the purified enzyme. Biochemistry 38(12):3649–3655CrossRefGoogle Scholar
  11. 11.
    Cartwright JL, McLennan AG (1999) The Saccharomyces cerevisiae YOR163w gene encodes a diadenosine 5′, 5″′- P1,P6-hexaphosphate (Ap6A) hydrolase member of the MutT motif (Nudix hydrolase) family. J Biol Chem 274(13):8604–8610CrossRefGoogle Scholar
  12. 12.
    Olejnik K, Murcha MW, Whelan J et al (2007) Cloning and characterization of AtNUDT13, a novel mitochondrial Arabidopsis thaliana Nudix hydrolase specific for long-chain diadenosine polyphosphates. FEBS J 274(18):4877–4885CrossRefGoogle Scholar
  13. 13.
    Kilari RS, Weaver JD, Shears SB et al (2013) Understanding inositol pyrophosphate metabolism and function: kinetic characterization of the DIPPs. FEBS Lett 587(21):3464–3470CrossRefGoogle Scholar
  14. 14.
    Fisher DI, Safrany ST, Strike P et al (2002) Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-Phosphoribosyl 1-Pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1,5-Bisphosphate. J Biol Chem 277(49):47313–47317CrossRefGoogle Scholar
  15. 15.
    Lonetti A, Szijgyarto Z, Bosch D et al (2011) Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 286(37):31966–31974CrossRefGoogle Scholar
  16. 16.
    Loss O, Azevedo C, Szijgyarto Z et al (2011) Preparation of quality inositol pyrophosphates. Jove 2011(55):e3027Google Scholar
  17. 17.
    Saiardi A, Bhandari R, Resnick AC et al (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306(5704):2101–2105CrossRefGoogle Scholar
  18. 18.
    Liew SM, Tay ST, Puthucheary SD (2013) Enzymatic and molecular characterisation of leucine aminopeptidase of Burkholderia pseudomallei. BMC Microbiol 13:110CrossRefGoogle Scholar
  19. 19.
    Cartwright JL, McLennan AG (1997) The MutT motif-containing ORF163w protein from the yeast Saccharomyces cerevisiae encodes a (di)nucleoside polyphosphate hydrolase. Biochem Soc Trans 25(4):S580CrossRefGoogle Scholar
  20. 20.
    Steidle EA, Chong LS, Wu M et al (2016) A novel inositol pyrophosphate phosphatase in Saccharomyces cerevisiae: Siw14 protein selectively cleaves the beta-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5). J Biol Chem 291(13):6772–6783CrossRefGoogle Scholar
  21. 21.
    Ross SH, Lindsay Y, Safrany ST et al (2007) Differential redox regulation within the PTP superfamily. Cellular Signal 19(7):1521–1530CrossRefGoogle Scholar
  22. 22.
    Losito O, Szijgyarto Z, Resnick AC et al (2009) Inositol pyrophosphates and their unique metabolic complexity: analysis by gel electrophoresis. PLoS One 4(5):e5580CrossRefGoogle Scholar
  23. 23.
    Mayr GW (1988) A novel metal-dye detection system permits picomolar-range HPLC analysis of inositol polyphosphates from non-radioactively labeled cell or tissue specimens. Biochem J 254(2):585–591CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Lucinda Winward
    • 1
  • Rajagopal Sharada Kilari
    • 2
  • Stephen T. Safrany
    • 3
    Email author
  1. 1.Division of Cell Signalling, School of Life SciencesUniversity of DundeeDundeeUK
  2. 2.Department of PharmacyUniversity of WolverhamptonWolverhamptonUK
  3. 3.RCSI-BahrainAdliyaBahrain

Personalised recommendations