Detection of Inositol Phosphates by Split PH Domains

  • Reiko Sakaguchi
  • Shunsuke Tajima
  • Yasuo Mori
  • Takashi MoriiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2091)


The pleckstrin homology (PH) domain is a family of structurally conserved proteins which can bind inositol phosphate derivatives. Some proteins involved in cellular signaling and cytoskeletal organization possess split PH domains that assemble into a structure which can bind specific inositol phosphates. Here we describe the design of split PH domain from a structurally well-characterized PH domain of phospholipase C (PLC) δ1 and Bruton’s tyrosine kinase (Btk), which selectively bind Ins(1,4,5)P3 and Ins(1,3,4,5)P4, respectively. The PH domains fold into a functional structure when the split halves are brought to close proximity, and can be utilized to detect specific inositol phosphate of interest.

Key words

Inositol phosphates PH domain Structure-based design Fluorescence 


  1. 1.
    Gibson TJ, Hyvonen M, Musacchio A, Saraste M, Birney E (1994) PH domain: the first anniversary. Trends Biochem Sci 19:349–353CrossRefGoogle Scholar
  2. 2.
    Walliser C, Retlich M, Harris R, Everett KL, Josephs MB, Vatter P, Esposito D, Driscoll PC, Katan M, Gierschik P, Bunney TD (2008) rac regulates its effector phospholipase Cgamma2 through interaction with a split pleckstrin homology domain. J Biol Chem 283:30351–30362CrossRefGoogle Scholar
  3. 3.
    van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH (2005) Phospholipase Cgamma1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104CrossRefGoogle Scholar
  4. 4.
    Yan J, Wen W, Xu W, Long JF, Adams ME, Froehner SC, Zhang M (2005) Structure of the split PH domain and distinct lipid-binding properties of the PH-PDZ supramodule of alpha-syntrophin. EMBO J 24:3985–3995CrossRefGoogle Scholar
  5. 5.
    Wen W, Liu W, Yan J, Zhang M (2008) Structure basis and unconventional lipid membrane binding properties of the PH-C1 tandem of rho kinases. J Biol Chem 283:26263–26273CrossRefGoogle Scholar
  6. 6.
    Lu Q, Yu J, Yan J, Wei Z, Zhang M (2011) Structural basis of the myosin X PH1(N)-PH2-PH1(C) tandem as a specific and acute cellular PI(3,4,5)P(3) sensor. Mol Biol Cell 22:4268–4278CrossRefGoogle Scholar
  7. 7.
    Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL (2006) ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125:99–111CrossRefGoogle Scholar
  8. 8.
    Ahn AH, Freener CA, Gussoni E, Yoshida M, Ozawa E, Kunkel LM (1996) The three human syntrophin genes are expressed in diverse tissues, have distinct chromosomal locations, and each bind to dystrophin and its relatives. J Biol Chem 271:2724–2730CrossRefGoogle Scholar
  9. 9.
    Lemmon MA, Ferguson KM, Schlessinger J (1996) PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85:621–624CrossRefGoogle Scholar
  10. 10.
    Falasca M, Logan SK, Lehto VP, Baccante G, Lemmon MA, Schlessinger J (1998) Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J 17:414–422CrossRefGoogle Scholar
  11. 11.
    Iwata Y, Pan Y, Yoshida T, Hanada H, Shigekawa M (1998) Alpha1-syntrophin has distinct binding sites for actin and calmodulin. FEBS Lett 423:173–177CrossRefGoogle Scholar
  12. 12.
    Rhee SG (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312CrossRefGoogle Scholar
  13. 13.
    Chang JS, Seok H, Kwon TK, Min DS, Ahn BH, Lee YH, Suh JW, Kim JW, Iwashita S, Omori A, Ichinose S, Numata O, Seo JK, Oh YS, Suh PG (2002) Interaction of elongation factor-1alpha and pleckstrin homology domain of phospholipase C-gamma 1 with activating its activity. J Biol Chem 277:19697–19702CrossRefGoogle Scholar
  14. 14.
    Scheffzek K, Welti S (2012) Pleckstrin homology (PH) like domains - versatile modules in protein-protein interaction platforms. FEBS Lett 586:2662–2673CrossRefGoogle Scholar
  15. 15.
    Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB (1995) Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83:1037–1046CrossRefGoogle Scholar
  16. 16.
    Sugimoto K, Mori Y, Makino K, Ohkubo K, Morii T (2003) Functional reassembly of a split PH domain. J Am Chem Soc 125:5000–5004CrossRefGoogle Scholar
  17. 17.
    Baraldi E, Djinovic Carugo K, Hyvonen M, Surdo PL, Riley AM, Potter BV, O'Brien R, Ladbury JE, Saraste M (1999) Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 7:449–460CrossRefGoogle Scholar
  18. 18.
    Sakaguchi R, Endoh T, Yamamoto S, Tainaka K, Sugimoto K, Fujieda N, Kiyonaka S, Mori Y, Morii T (2009) A single circularly permuted GFP sensor for inositol-1,3,4,5-tetrakisphosphate based on a split PH domain. Bioorg Med Chem 17:7381–7386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Reiko Sakaguchi
    • 1
  • Shunsuke Tajima
    • 2
  • Yasuo Mori
    • 1
    • 3
  • Takashi Morii
    • 2
    Email author
  1. 1.Institute for Integrated Cell-Material SciencesKyoto UniversityNishikyo-kuJapan
  2. 2.Institute of Advanced EnergyKyoto UniversityUjiJapan
  3. 3.Department of Synthetic Chemistry and Biological Chemistry, Graduate School of EngineeringKyoto UniversityNishikyo-kuJapan

Personalised recommendations