In Silico Laboratory: Tools for Similarity-Based Drug Discovery

  • Samo Lešnik
  • Janez KoncEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2089)


Computational methods that predict and evaluate binding of ligands to receptors implicated in different pathologies have become crucial in modern drug design and discovery. Here, we describe protocols for using the recently developed package of computational tools for similarity-based drug discovery. The ProBiS stand-alone program and web server allow superimposition of protein structures against large protein databases and predict ligands based on detected binding site similarities. GenProBiS allows mapping of human somatic missense mutations related to cancer and non-synonymous single nucleotide polymorphisms and subsequent visual exploration of specific interactions in connection to these mutations. We describe protocols for using LiSiCA, a fast ligand-based virtual screening software that enables easy screening of large databases containing billions of small molecules. Finally, we show the use of BoBER, a web interface that enables user-friendly access to a large database of bioisosteric and scaffold hopping replacements.

Key words

Drug discovery Binding sites Enzyme binding Virtual screening Ligand homology modeling Protein sequence variants Bioisosterism Maximum clique algorithm Scaffold hopping ProBiS ProBiS-CHARMMing GenProBiS LiSiCA BoBER 



Financial support through Slovenian Research Agency grant L7-8269 is gratefully acknowledged.


  1. 1.
    Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395. Scholar
  2. 2.
    Macalino SJY, Gosu V, Hong S, Choi S (2015) Role of computer-aided drug design in modern drug discovery. Arch Pharm Res 38:1686–1701. Scholar
  3. 3.
    Konc J, Janežič D (2007) An improved branch and bound algorithm for the maximum clique problem. MATCH Commun Math Comput Chem 58:569–590Google Scholar
  4. 4.
    Burley SK, Berman HM, Kleywegt GJ et al (2017) Protein Data Bank (PDB): the single global macromolecular structure archive. In: Wlodawer A, Dauter Z, Jaskolski M (eds) Protein crystallography: methods and protocols. Springer, New York, NY, pp 627–641CrossRefGoogle Scholar
  5. 5.
    Konc J, Hodošček M, Ogrizek M et al (2013) Structure-based function prediction of uncharacterized protein using binding sites comparison. PLoS Comput Biol 9:e1003341. Scholar
  6. 6.
    Konc J, Skrlj B, Erzen N et al (2017) GenProBiS: web server for mapping of sequence variants to protein binding sites. Nucleic Acids Res 45:W253–W259. Scholar
  7. 7.
    Štular T, Lešnik S, Rožman K et al (2016) Discovery of Mycobacterium tuberculosis InhA inhibitors by binding sites comparison and ligands prediction. J Med Chem 59:11069–11078. Scholar
  8. 8.
    Konc J, Janežič D (2010) ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26:1160–1168. Scholar
  9. 9.
    Konc J, Janežič D (2014) ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites. Nucleic Acids Res 42:W215–W220. Scholar
  10. 10.
    Konc J, Janežič D (2010) ProBiS: a web server for detection of structurally similar protein binding sites. Nucleic Acids Res 38:W436–W440. Scholar
  11. 11.
    Konc J, Janežič D (2012) ProBiS-2012: web server and web services for detection of structurally similar binding sites in proteins. Nucleic Acids Res 40:W214–W221. Scholar
  12. 12.
    Konc J, Janežič D (2017) ProBiS tools (algorithm, database, and web servers) for predicting and modeling of biologically interesting proteins. Prog Biophys Mol Biol 128:24–32. Scholar
  13. 13.
    Konc J, Česnik T, Konc JT et al (2012) ProBiS-database: precalculated binding site similarities and local pairwise alignments of PDB structures. J Chem Inf Model 52:604–612. Scholar
  14. 14.
    Konc J, Depolli M, Trobec R et al (2012) Parallel-ProBiS: fast parallel algorithm for local structural comparison of protein structures and binding sites. J Comput Chem 33:2199–2203. Scholar
  15. 15.
    Konc J, Lešnik S, Janežič D (2015) Modeling enzyme-ligand binding in drug discovery. J Chem 7:48. Scholar
  16. 16.
    Miller BT, Singh RP, Klauda JB et al (2008) CHARMMing: a new, flexible web portal for CHARMM. J Chem Inf Model 48:1920–1929. Scholar
  17. 17.
    Konc J, Miller BT, Štular T et al (2015) ProBiS-CHARMMing: web interface for prediction and optimization of ligands in protein binding sites. J Chem Inf Model 55:2308–2314. Scholar
  18. 18.
    Lešnik S, Štular T, Brus B et al (2015) LiSiCA: a software for ligand-based virtual screening and its application for the discovery of butyrylcholinesterase inhibitors. J Chem Inf Model 55:1521–1528. Scholar
  19. 19.
    Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55:2324–2337. Scholar
  20. 20.
    DeLano WL (2002) The PyMOL molecular graphics system. http://www.Pymol.Org
  21. 21.
    Dilip A, Lešnik S, Štular T et al (2016) Ligand-based virtual screening interface between PyMOL and LiSiCA. J Chem 8:46. Scholar
  22. 22.
    Lešnik S, Škrlj B, Eržen N et al (2017) BoBER: web interface to the base of bioisosterically exchangeable replacements. J Chem 9:62. Scholar
  23. 23.
    Lešnik S, Konc J, Janežič D (2016) Scaffold hopping and bioisosteric replacements based on binding site alignments. Croat Chem Acta 89:431–437. Scholar
  24. 24.
    Rožman K, Lešnik S, Brus B et al (2017) Discovery of new MurA inhibitors using induced-fit simulation and docking. Bioorg Med Chem Lett 27:944–949. Scholar
  25. 25.
    Reigada C, Valera-Vera EA, Sayé M et al (2017) Trypanocidal effect of isotretinoin through the inhibition of polyamine and amino acid transporters in Trypanosoma cruzi. PLoS Negl Trop Dis 11:e0005472. Scholar
  26. 26.
    Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145. Scholar
  27. 27.
    Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. Scholar
  28. 28.
    The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. Scholar
  29. 29.
    Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. Scholar
  30. 30.
    Landrum MJ, Lee JM, Benson M et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44:D862–D868. Scholar
  31. 31.
    Thorn CF, Klein TE, Altman RB (2013) PharmGKB: the pharmacogenomics knowledge base. In: Innocenti F, van Schaik RHN (eds) Pharmacogenomics: methods and protocols. Humana Press, Totowa, NJ, pp 311–320CrossRefGoogle Scholar
  32. 32.
    O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Chem 3(33).

Copyright information

© Springer Science+Business Media, LLC 2020

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of MariborMariborSlovenia
  2. 2.National Institute of ChemistryLjubljanaSlovenia
  3. 3.Faculty of Mathematics, Natural Sciences and Information TechnologiesUniversity of PrimorskaKoperSlovenia
  4. 4.Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations