Neutrophil pp 301-324 | Cite as

Measurement of Respiratory Burst Products, Released or Retained, During Activation of Professional Phagocytes

  • Claes DahlgrenEmail author
  • Halla Björnsdottir
  • Martina Sundqvist
  • Karin Christenson
  • Johan Bylund
Part of the Methods in Molecular Biology book series (MIMB, volume 2087)


Activation of professional phagocytes, potent microbial killers of our innate immune system, is associated with an increased cellular consumption of molecular oxygen (O2). The O2 molecules consumed are reduced by electrons delivered by a membrane localized NADPH-oxidase that initially generate one- and two electron reduced superoxide anions (O2) and hydrogen peroxide (H2O2), respectively. These oxidants can then be processed into other highly reactive oxygen species (ROS) that can kill microbes, but that may also cause tissue destruction and drive other immune cells into apoptosis. The development of basic techniques to measure and quantify ROS generation by phagocytes is of great importance, and a large number of methods have been used for this purpose. A selection of methods (including chemiluminescence amplified by luminol or isoluminol, absorbance change following reduction of cytochrome c, and fluorescence increase upon oxidation of PHPA) are described in detail in this chapter with special emphasis on how to distinguish between ROS that are released extracellularly, and those that are retained within intracellular organelles. These techniques can be valuable tools in research spanning from basic phagocyte biology to diagnosis of diseases linked to the NADPH-oxidase and more clinically oriented research on innate immune mechanisms and inflammation.

Key words

Reactive oxygen species Superoxide anions Hydrogen peroxide Myeloperoxidase Intracellular NADPH-oxidase activity Plasma membrane NADPH-oxidase activity Subcellular granules Chemiluminescence Cytochrome c reduction PHPA oxidation 



This work was supported by the Swedish Research Council, the Swedish Society for Medical Research, the IngaBritt and Arne Lundberg Research Foundation, the Swedish state under the LUA-ALF and TUA agreements, the Swedish Heart- and Lung Foundation, and the King Gustaf V Memorial Foundation. We thank Maria Hjulström and Hülya Çevik-Aras for performing chemiluminescence determinations with the National diagnostic kit and L-012, respectively.


  1. 1.
    Quie PG, White JG, Holmes B et al (1967) In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest 46:668–679PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rieber N, Hector A, Kuijpers T et al (2012) Current concepts of hyperinflammation in chronic granulomatous disease. Clin Dev Immunol 2012:252460PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Quinn MT, Gauss KA (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 76:760–781PubMedCrossRefGoogle Scholar
  5. 5.
    Bylund J, Brown KL, Movitz C et al (2010) Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic Biol Med 49:1834–1845PubMedCrossRefGoogle Scholar
  6. 6.
    Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52:741–744PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Baehner RL, Murrmann SK, Davis J et al (1975) The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions. J Clin Invest 56:571–576PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Johnston RB Jr, Keele BB Jr, Misra HP et al (1975) The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest 55:1357–1372PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017PubMedCrossRefGoogle Scholar
  10. 10.
    Slauch JM (2011) How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol 80:580–583PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Winterbourn CC, Kettle AJ (2013) Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal 18:642–660PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Levine AP, Duchen MR, de Villiers S et al (2015) Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity. PLoS One 10:e0125906PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dahlgren C, Karlsson A, Bylund J (2019) Intracellular neutrophil oxidants: from laboratory curiosity to clinical reality. J Immonol 202(11):3127–3134CrossRefGoogle Scholar
  14. 14.
    Borregaard N, Heiple JM, Simons ER et al (1983) Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol 97:52–61PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hager M, Cowland JB, Borregaard N (2010) Neutrophil granules in health and disease. J Intern Med 268:25–34PubMedPubMedCentralGoogle Scholar
  16. 16.
    Dahlgren C, Johansson A, Lundqvist H et al (1992) Activation of the oxygen-radical-generating system in granules of intact human neutrophils by a calcium ionophore (ionomycin). Biochim Biophys Acta 1137:182–188PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Karlsson A, Dahlgren C (2002) Assembly and activation of the neutrophil NADPH oxidase in granule membranes. Antioxid Redox Signal 4:49–60PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Matute JD, Arias AA, Wright NA et al (2009) A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood 114:3309–3315PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    van de Geer A, Nieto-Patlan A, Kuhns DB et al (2018) Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest 128(9):3957–3975PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bjorkman L, Dahlgren C, Karlsson A et al (2008) Phagocyte-derived reactive oxygen species as suppressors of inflammatory disease. Arthritis Rheum 58:2931–2935PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ferguson PJ, Lokuta MA, El-Shanti HI et al (2008) Neutrophil dysfunction in a family with a SAPHO syndrome-like phenotype. Arthritis Rheum 58:3264–3269PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wekell P, Bjornsdottir H, Bjorkman L et al (2016) Neutrophils from patients with SAPHO syndrome show no signs of aberrant NADPH oxidase-dependent production of intracellular reactive oxygen species. Rheumatology (Oxford) 55:1489–1498CrossRefGoogle Scholar
  23. 23.
    Dahlgren C, Karlsson A (2002) Ionomycin-induced neutrophil NADPH oxidase activity is selectively inhibited by the serine protease inhibitor diisopropyl fluorophosphate. Antioxid Redox Signal 4:17–25PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Karlsson A, Follin P, Leffler H et al (1998) Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood 91:3430–3438PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Karlsson A, Nixon JB, McPhail LC (2000) Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. J Leukoc Biol 67:396–404PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lock R, Dahlgren C, Linden M et al (1990) Neutrophil killing of two type 1 fimbria-bearing Escherichia coli strains: dependence on respiratory burst activation. Infect Immun 58:37–42PubMedPubMedCentralGoogle Scholar
  27. 27.
    Serrander L, Larsson J, Lundqvist H et al (1999) Particles binding beta(2)-integrins mediate intracellular production of oxidative metabolites in human neutrophils independently of phagocytosis. Biochim Biophys Acta 1452:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Brown GE, Stewart MQ, Liu H et al (2003) A novel assay system implicates PtdIns(3,4)P(2), PtdIns(3)P, and PKC delta in intracellular production of reactive oxygen species by the NADPH oxidase. Mol Cell 11:35–47PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kent JD, Sergeant S, Burns DJ et al (1996) Identification and regulation of protein kinase C-delta in human neutrophils. J Immunol 157:4641–4647PubMedPubMedCentralGoogle Scholar
  30. 30.
    Sergeant S, McPhail LC (1997) Opsonized zymosan stimulates the redistribution of protein kinase C isoforms in human neutrophils. J Immunol 159:2877–2885PubMedPubMedCentralGoogle Scholar
  31. 31.
    Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Brinkmann V (2018) Neutrophil extracellular traps in the second decade. J Innate Immun 10(5–6):414–421PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bjornsdottir H, Welin A, Michaelsson E et al (2015) Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Free Radic Biol Med 89:1024–1035PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Bjornsdottir H, Welin A, Dahlgren C et al (2016) Quantification of heterotypic granule fusion in human neutrophils by imaging flow cytometry. Data Brief 6:386–393PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Murphy MP, Holmgren A, Larsson NG et al (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hancock JT, Jones OT (1987) The inhibition by diphenyleneiodonium and its analogues of superoxide generation by macrophages. Biochem J 242:103–107PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kalyanaraman B, Hardy M, Podsiadly R et al (2017) Recent developments in detection of superoxide radical anion and hydrogen peroxide: opportunities, challenges, and implications in redox signaling. Arch Biochem Biophys 617:38–47PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kobayashi T, Robinson JM, Seguchi H (1998) Identification of intracellular sites of superoxide production in stimulated neutrophils. J Cell Sci 111(Pt 1):81–91PubMedPubMedCentralGoogle Scholar
  39. 39.
    Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lundqvist H, Dahlgren C (1996) Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils. Free Radic Biol Med 20:785–792PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Halliwell B, Gutteridge JM (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol Asp Med 8:89–193CrossRefGoogle Scholar
  42. 42.
    Root RK, Metcalf J, Oshino N et al (1975) H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest 55:945–955PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Root RK, Metcalf JA (1977) H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells. J Clin Invest 60:1266–1279PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    van Pelt LJ, van Zwieten R, Weening RS et al (1996) Limitations on the use of dihydrorhodamine 123 for flow cytometric analysis of the neutrophil respiratory burst. J Immunol Methods 191:187–196PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022PubMedCrossRefGoogle Scholar
  46. 46.
    Segal BH, Leto TL, Gallin JI et al (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79:170–200CrossRefGoogle Scholar
  47. 47.
    Segal BH, Veys P, Malech H et al (2011) Chronic granulomatous disease: lessons from a rare disorder. Biol Blood Marrow Transplant 17:S123–S131PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Rosen H, Klebanoff SJ (1979) Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte. J Exp Med 149:27–39PubMedCrossRefGoogle Scholar
  49. 49.
    Weiss SJ, Klein R, Slivka A et al (1982) Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest 70:598–607PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Green JN, Kettle AJ, Winterbourn CC (2014) Protein chlorination in neutrophil phagosomes and correlation with bacterial killing. Free Radic Biol Med 77:49–56PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Chapman AL, Hampton MB, Senthilmohan R et al (2002) Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem 277:9757–9762PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kutter D, Devaquet P, Vanderstocken G et al (2000) Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit ? Acta Haematol 104:10–15PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Segal AW, Garcia RC, Harper AM et al (1983) Iodination by stimulated human neutrophils. Studies on its stoichiometry, subcellular localization and relevance to microbial killing. Biochem J 210:215–225PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys 271:C1424–C1437CrossRefGoogle Scholar
  55. 55.
    Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Arnadottir GA, Norddahl GL, Gudmundsdottir S et al (2018) A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun 9:4447PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Delgado-Rizo V, Martinez-Guzman MA, Iniguez-Gutierrez L et al (2017) Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol 8:81PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jorch SK, Kubes P (2017) An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 23:279–287PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Van Avondt K, Hartl D (2018) Mechanisms and disease relevance of neutrophil extracellular trap formation. Eur J Clin Invest 48(Suppl 2):e12919PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Holland PC, Sherratt HS (1972) Biochemical effects of the hypoglycaemic compound diphenyleneiodonnium. Catalysis of anion-hydroxyl ion exchange across the inner membrane of rat liver mitochondria and effects on oxygen uptake. Biochem J 129:39–54PubMedPubMedCentralGoogle Scholar
  61. 61.
    Altenhofer S, Radermacher KA, Kleikers PW et al (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23:406–427PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hirano K, Chen WS, Chueng AL et al (2015) Discovery of GSK2795039, a novel small molecule NADPH oxidase 2 inhibitor. Antioxid Redox Signal 23:358–374PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Dahlgren C, Gabl M, Holdfeldt A et al (2016) Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 114:22–39PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Bylund J, Campsall PA, Ma RC et al (2005) Burkholderia cenocepacia induces neutrophil necrosis in chronic granulomatous disease. J Immunol 174:3562–3569PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Bylund J, MacDonald KL, Brown KL et al (2007) Enhanced inflammatory responses of chronic granulomatous disease leukocytes involve ROS-independent activation of NF-kappa B. Eur J Immunol 37:1087–1096PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sundqvist M, Christenson K, Bjornsdottir H et al (2017) Elevated mitochondrial reactive oxygen species and cellular redox imbalance in human NADPH-oxidase-deficient phagocytes. Front Immunol 8:1828PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Dahlgren C, Stendahl O (1983) Role of myeloperoxidase in luminol-dependent chemiluminescence of polymorphonuclear leukocytes. Infect Immun 39:736–741PubMedPubMedCentralGoogle Scholar
  68. 68.
    Bjornsdottir H, Granfeldt D, Welin A et al (2013) Inhibition of phospholipase A(2) abrogates intracellular processing of NADPH-oxidase derived reactive oxygen species in human neutrophils. Exp Cell Res 319:761–774PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Imada I, Sato EF, Miyamoto M et al (1999) Analysis of reactive oxygen species generated by neutrophils using a chemiluminescence probe L-012. Anal Biochem 271:53–58PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Nishinaka Y, Aramaki Y, Yoshida H et al (1993) A new sensitive chemiluminescence probe, L-012, for measuring the production of superoxide anion by cells. Biochem Biophys Res Commun 193:554–559PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kielland A, Blom T, Nandakumar KS et al (2009) In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med 47:760–766PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Almkvist J, Dahlgren C, Leffler H et al (2002) Activation of the neutrophil nicotinamide adenine dinucleotide phosphate oxidase by galectin-1. J Immunol 168:4034–4041PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Fu H, Belaaouaj AA, Dahlgren C et al (2003) Outer membrane protein a deficient Escherichia coli activates neutrophils to produce superoxide and shows increased susceptibility to antibacterial peptides. Microbes Infect 5:781–788PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Fu H, Karlsson J, Bylund J et al (2006) Ligand recognition and activation of formyl peptide receptors in neutrophils. J Leukoc Biol 79:247–256PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Karlsson J, Fu H, Boulay F et al (2005) Neutrophil NADPH-oxidase activation by an annexin AI peptide is transduced by the formyl peptide receptor (FPR), whereas an inhibitory signal is generated independently of the FPR family receptors. J Leukoc Biol 78:762–771PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lundqvist H, Follin P, Khalfan L et al (1996) Phorbol myristate acetate-induced NADPH oxidase activity in human neutrophils: only half the story has been told. J Leukoc Biol 59:270–279PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Thoren F, Romero A, Lindh M et al (2004) A hepatitis C virus-encoded, nonstructural protein (NS3) triggers dysfunction and apoptosis in lymphocytes: role of NADPH oxidase-derived oxygen radicals. J Leukoc Biol 76:1180–1186PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Foyouzi-Youssefi R, Petersson F, Lew DP et al (1997) Chemoattractant-induced respiratory burst: increases in cytosolic Ca2+ concentrations are essential and synergize with a kinetically distinct second signal. Biochem J 322(Pt 3):709–718PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Boveris A, Martino E, Stoppani AO (1977) Evaluation of the horseradish peroxidase-scopoletin method for the measurement of hydrogen peroxide formation in biological systems. Anal Biochem 80:145–158PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Mohanty JG, Jaffe JS, Schulman ES et al (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods 202:133–141PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Zarember KA, Kuhns DB (2011) Editorial: will the real neutrophil please stand up? J Leukoc Biol 90:1039–1041PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Faldt J, Ridell M, Karlsson A et al (1999) The phagocyte chemiluminescence paradox: luminol can act as an inhibitor of neutrophil NADPH-oxidase activity. Luminescence 14:153–160PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Leutner S, Schindowski K, Frolich L et al (2005) Enhanced ROS-generation in lymphocytes from Alzheimer's patients. Pharmacopsychiatry 38:312–315PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Mauch L, Lun A, O'Gorman MR et al (2007) Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Clin Chem 53:890–896PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Albrett AM, Ashby LV, Dickerhof N et al (2018) Heterogeneity of hypochlorous acid production in individual neutrophil phagosomes revealed by a rhodamine-based probe. J Biol Chem 293:15715–15724PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Claes Dahlgren
    • 1
    Email author
  • Halla Björnsdottir
    • 2
  • Martina Sundqvist
    • 1
  • Karin Christenson
    • 2
  • Johan Bylund
    • 2
  1. 1.Department of Rheumatology and Inflammation Research, Institute of MedicineSahlgrenska Academy at University of GothenburgGothenburgSweden
  2. 2.Department of Oral Microbiology and Immunology, Institute of OdontologySahlgrenska Academy at University of GothenburgGothenburgSweden

Personalised recommendations