Wildlife Sentinels for Human and Environmental Health Hazards in Ecotoxicological Risk Assessment

  • Antonio Juan García-FernándezEmail author
  • Silvia Espín
  • Pilar Gómez-Ramírez
  • Emma Martínez-López
  • Isabel Navas
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Can animals reflect human and environmental health risks? This is a frequently asked question in the research community. Sentinel species are organisms that can provide early warning signs of potential risks to humans, so that preventive measures can be taken in time to avoid serious adverse health consequences. In spite of the well-known cases of use of sentinel species, animals are continuously offering information that in most cases is underestimated or incorrectly interpreted. Many species may be successfully used as sentinels or monitors of environmental and health hazards; however, there is no ideal species for all types of scenarios and conditions. For this reason, the advantages and disadvantages on the use of potential sentinel species and the main characteristics they should gather to be effective sentinels are discussed. Although a wide range of wildlife species are considered good candidates for biomonitoring purposes, bird species are especially suitable as biomonitors of environmental quality and to estimate human health risks.

During the last two decades, the effects induced by endocrine-disrupting chemicals (EDCs) on hormone action have been widely tested. Since the mid-twentieth century, it is well-known that humans and wildlife species are simultaneously exposed to multiple chemicals from multiple sources with potential ability to disrupt the endocrine system by different pathways and/or interfere with hormone actions. Moreover, additive effects related to this chemical cocktail exposure could be expected, increasing the potential risks to animal and human health. In addition, carcinogenic, immunotoxic, neurotoxic, behavioral, and other chronic effects are observed in wildlife, which are closely linked to human diseases.

Key words

Wildlife Sentinel animals Ecotoxicological risk Free-living animals Human health Environmental health Biomonitoring Endocrine disruption Cancer Immunotoxicity Neurotoxicity Behavioral effects 


  1. 1.
    Burrell GA, Seibert FM (1916) Gases found in coal mines. Miners’ Circular 14. Bureau of Mines, Department of the Interior, Washington, DCGoogle Scholar
  2. 2.
    Fox GA (2001) Wildlife as sentinels of human health effects in the Great Lakes–St. Lawrence Basin. Environ Health Perspect 109(suppl 6):853–886PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Halliday JE, Meredith AL, Knobel DL, Shaw DJ, Bronsvoort BM, Cleaveland S (2007) A framework for evaluating animals as sentinels for infectious disease surveillance. J R Soc Interface 4:973–984PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Stephen C, Ribble C (2001) Death, disease and deformity; using outbreaks in animals as sentinels for emerging environmental health risks. Glob Change Hum Health 2:108–117CrossRefGoogle Scholar
  5. 5.
    van der Schalie WH, Gardner HS, Bantle JA, De Rosa CT, Finch RA, Reif JS, Reuter RH, Backe LC, Burger J, Folmar LC, Stokes WS (1999) Animals as sentinels of human health hazards of environmental chemicals. Environ Health Perspect 107:309–315PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    García-Fernández AJ (2014) Avian ecotoxicology. In: Wexler P (ed) Encyclopedia of toxicology, 3rd edn, vol 2. Amsterdam Academic Press, Elsevier, pp 289–294. ISBN: 9780123864543Google Scholar
  7. 7.
    Reif JS (2011) Animal sentinels for environmental and public health. Publ Health Rep 126:50–57CrossRefGoogle Scholar
  8. 8.
    García-Fernández AJ, Calvo JF, Martínez-López E, María-Mojica P, Martínez JE (2008) Ecotoxicology of Raptors in Spain: a review of persistent environmental contaminants. Ambio 37:432–439PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Espín S, García-Fernández AJ, Herzke D, Shore RF, van Hattum B, Martínez-López E, Coeurdassier M, Eulaers I, Fritsch C, Gómez-Ramírez P, Jaspers VL, Krone O, Duke G, Helander B, Mateo R, Movalli P, Sonne C, van den Brink NW (2016) Tracking pan-continental trends in environmental contamination using sentinel raptors-what types of samples should we use? Ecotoxicology 25(4):777–801PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    García-Fernández AJ, Romero D, Martínez-López E, Navas I, Pulido M, María-Mojica P (2005) Environmental lead exposure in the European kestrel (Falco tinnunculus) from southeastern Spain: the influence of leaded gasoline regulations. Bull Environ Contam Toxicol 74:314–319PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gómez-Ramírez P, Shore RF, van den Brink NW, van Hattum B, Bustnes JO, Duke G, Fritsch C, García-Fernández AJ, Helander BO, Jaspers V, Krone O, Martínez-López E, Mateo R, Movalli P, Sonne C (2014) An overview of existing raptor contaminant monitoring activities in Europe. Environ Int 28(2):300–306Google Scholar
  12. 12.
    Martínez-López E, María-Mojica P, Gómez-Ramírez P, Calvo JF, Martínez JE, García-Fernández AJ (2012) DDT residues in breeding population of booted eagle (Aquila pennata) associated with agricultural land practices. In: Jokanovic M (ed) The impact of pesticides., Cheyenne, pp 321–338. ISBN; 978-0-9835850-9-1Google Scholar
  13. 13.
    Valverde I, Espín S, Navas I, María-Mojica P, Gil JM, García-Fernández AJ (2019) Lead exposure in common shelduck (Tadorna tadorna): tracking the success of the Pb shot ban for hunting in Spanish wetlands. Regul Toxicol Pharmacol 106:147–151PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Damstra T, Barlow S, Bergman A, Kavlock RJ, van der Kraak G (eds) (2002) Global assessment of the state-of-the-science of endocrine disruptors. World Health Organization, GenevaGoogle Scholar
  15. 15.
    Zoeller RT, Bergman Å, Becher G, Bjerregaard P, Bornman R, Brandt I, Iguchi T, Jobling S, Kidd KA, Kortenkamp A, Skakkebaek NE, Toppari J, Vandenberg LN (2014) A path forward in the debate over health impacts of endocrine disrupting chemicals. Environ Health 13:118PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Shug TT, Johnson AF, Birnbaum LS, Colborn T, Guillette LJ Jr, Crews DP, Collins T, Soto AM, vom Saal FS, McLachlan JA, Sonnenschein C, Heindel JJ (2016) Minireview: endocrine disruptors: past lessons and future directions. Mol Endocrinol 30:833–847CrossRefGoogle Scholar
  17. 17.
    Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller RT (2013) State of the science of endocrine disrupting chemicals 2012. WHO/UNEP, p 289Google Scholar
  18. 18.
    Newman MC (2015) Fundamentals of ecotoxicology. The science of pollution, 4th edn. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  19. 19.
    Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT, Foster PM, Gray CL, Gray LE (2008) Fifteen years after “Wingspread”—Environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci 105(2):235–259PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kortenkamp A (2014) Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Curr Opin Pharmacol 19:105–111PubMedCrossRefGoogle Scholar
  21. 21.
    Grandjean P, Barouki R, Bellinger DC, Casteleyn L, Chadwick LH, Cordier S, Etzel RA, Gray KA, Ha EH, Junien C, Karagas M, Kawamoto T, Paige LB, Perera FP, Prins GS, Puga A, Rosenfeld CS, Sherr DH, Sly PD, Suk W, Sun Q, Toppari J, van den Hazel P, Walker CL, Heindel JJ (2015) Life-long implications of developmental exposure to environmental stressors: new perspectives. Endocrinology 156:3408–3415PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Miller MD, Crofton KM, Rice DC, Zoeller RT (2009) Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect 117(7):1033–1041PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Guillette LJ Jr, Iguchi T (2012) Ecology. Life in a contaminated world. Science 337(6102):1614–1615PubMedCrossRefGoogle Scholar
  24. 24.
    Pesavento PA, Agnew D, Keel MK, Woolard KD (2018) Cancer in wildlife: patterns of emergence. Nat Rev Cancer 18:646PubMedCrossRefGoogle Scholar
  25. 25.
    Siegfried LM (1983) Neoplasms identified in free-flying birds. Avian Dis 27:86–99PubMedCrossRefGoogle Scholar
  26. 26.
    Lair S, Measures LN, Martineau D (2016) Pathologic findings and trends in mortality in the Beluga (Delphinapterus leucas) population of the St Lawrence Estuary, Quebec, Canada, from 1983 to 2012. Vet Pathol 53:22–36PubMedCrossRefGoogle Scholar
  27. 27.
    Couillard CM, Hodson PV, Castonguay M (1997) Correlations between pathological changes and chemical contamination in American eels, Anguilla rostrata, from the St. Lawrence River. Can J Fish Aquat Sci 54:1916–1927CrossRefGoogle Scholar
  28. 28.
    Mikaelian I, de Lafontaine Y, Menard C, Tellier P, Harshbarger J, Martineau D (1998) Neoplastic and nonneoplastic hepatic changes in lake whitefish (Coregonus clupeaformis) from the St. Lawrence River, Quebec, Canada. Environ Health Perspect 106:179–183PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Armstrong B, Tremblay C, Baris D, Thériault G (1994) Lung cancer mortality and polynuclear aromatic hydrocarbons: a case-cohort study of aluminum production workers in Arvida, Quebec, Canada. Am J Epidemiol 139:250–262PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Gibbs GW, Labrèche F, Busque MA, Duguay P (2014) Mortality and cancer incidence in aluminum smelter workers: a 5-year update. J Occup Environ Med 56:739–764PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tremblay C, Armstrong B, Thériault G, Brodeur J (1995) Estimation of risk of developing bladder cancer among workers exposed to coal tar pitch volatiles in the primary aluminum industry. Am J Ind Med 27:335–348PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Thirtamara Rajamani K, Doherty-Lyons S, Bolden C, Willis D, Hoffman C, Zelikoff J et al (2013) Prenatal and early-life exposure to high-level diesel exhaust particles leads to increased locomotor activity and repetitive behaviors in mice: diesel exhaust particles and autism. Autism Res 6:248–257PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Raciti M, Ceccatelli S (2018) Epigenetic mechanisms in developmental neurotoxicity. Neurotoxicol Teratol 66:94–101PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Legradi J, Di Paolo C, Kraak MHS, van der Geest HG, Schymanski EL, Williams AJ, Dingemans MML, Massei R, Brack W, Cousin X et al (2018) An ecotoxicological view on neurotoxicity assessment. Environ Sci Europe 30(1):46CrossRefGoogle Scholar
  35. 35.
    Crofton KM, Mundy WR, Shafer TJ (2012) Developmental neurotoxicity testing: a path forward. Cong Anomal 52:140–146CrossRefGoogle Scholar
  36. 36.
    Sonne C, Letcher RJ, Jenssen BM, Desforges JP, Eulaers I, Andersen-Ranberg E, Gustavson K, Styrishave B, Dietz R (2017) A veterinary perspective on One Health in the Arctic. Acta Vet Scand 59:84PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sibly RM, Newton I, Walker CH (2000) Effects of dieldrin on population growth rates of UK sparrowhaws. J Appl Ecol 37:540–546CrossRefGoogle Scholar
  38. 38.
    Saeedi Saravi S, Dehpour AR (2016) Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: a review. Life Sci 145:255–264PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Martínez-López E, Romero D, María-Mojica P, Martínez JE, Calvo JF, García-Fernández AJ (2009) Changes in blood pesticide levels in Booted eagle (Hieraaetus pennatus) associated with agricultural land practices. Ecotoxicol Environ Saf 72:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Navas I (2017) Contaminantes ambientales persistentes (Metales Pesados y Plaguicidas Organoclorados) en Rapaces del Sur de España. Doctoral thesis, University of MurciaGoogle Scholar
  41. 41.
    Stamler CJ, Basu N, Man CH (2005) Biochemical markers of neurotoxicity in wildlife and human populations: considerations for method development. J Toxicol Environ Health A 68(16):1413–1429PubMedCrossRefGoogle Scholar
  42. 42.
    Luster MI (2014) A historical perspective of immunotoxicology. J Immunotoxicol 11:197–202PubMedCrossRefGoogle Scholar
  43. 43.
    Dean JH, House RV, Luster MI (2001) Immunotoxicology: effects of, and response to, drugs and chemicals. In: Hayes AW (ed) Principles and methods of toxicology, 4th edn. Taylor & Francis, London, pp 1415–1450Google Scholar
  44. 44.
    Rehberger K, Werner I, Hitzfeld B, Segner H, Baumann L (2017) 20 Years of fish immunotoxicology – what we know and where we are. Crit Rev Toxicol 47(6):509–535PubMedCrossRefGoogle Scholar
  45. 45.
    Desforges JP, Sonne C, Levin M, Siebert U, De Guise S, Dietz R (2016) Immunotoxic effects of environmental pollutants in marine mammals. Environ Int 86:126–139PubMedCrossRefGoogle Scholar
  46. 46.
    Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, Johnson CM, Johnson LB, Lieske C, Piwoni MD, Schoff PK, Beasley VR (2008) Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:1235–1239PubMedCrossRefGoogle Scholar
  47. 47.
    Hall AJ, Hugunin K, Deaville R, Law RJ, Allchin CR, Jepson PD (2006) The risk of infection from polychlorinated biphenyl exposure in the harbor porpoise (Phocoena phocoena): a case–control approach. Environ Health Perspect 114:704–711PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Friend M, Trainer DO (1970) Polychlorinated biphenyl: interaction with duck hepatitis virus. Science 170:1314–1316PubMedCrossRefGoogle Scholar
  49. 49.
    Grasman KA (2002) Assessing immunological function in toxicological studies of Avian wildlife. Integr Comp Biol 42:34–42PubMedCrossRefGoogle Scholar
  50. 50.
    Corsini E, Luebke RW, Germolec DR, DeWitt JC (2014) Perfluorinated compounds: emerging POPs with potential immunotoxicity. Toxicol Lett 230:263–270PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Acir IH, Guenther K (2018) Endocrine-disrupting metabolites of alkylphenol ethoxylates – a critical review of analytical methods, environmental occurrences, toxicity, and regulation. Sci Total Environ 635:1530–1546PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Besedovsky HO, Del Rey A (1996) Immuno-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 17:64–102PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Calderón-Garcidueñas L, Mora-Tiscareño A, Ontiveros E, Gómez- Garza G, Barragán-Mejía G, Broadway J et al (2008) Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn 68:117–127PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Peterson RE, Seefeld MD, Christian BJ, Potter CL, Kelling CK, Keesey RE (1984) The wasting syndrome in 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity: basic features and their interpretation. In: The Banbury report – biological mechanisms of dioxin action. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 291–308Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Antonio Juan García-Fernández
    • 1
    Email author
  • Silvia Espín
    • 1
  • Pilar Gómez-Ramírez
    • 1
  • Emma Martínez-López
    • 1
  • Isabel Navas
    • 1
  1. 1.Toxicology and Risk Assessment Group, Department of Health SciencesBiomedical Research Institute of Murcia (IMIB-Arrixaca), Faculty of Veterinary, University of MurciaCampus de EspinardoSpain

Personalised recommendations