Advertisement

Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity

  • Gourhari Jana
  • Ranita Pal
  • Shamik SuralEmail author
  • Pratim Kumar ChattarajEmail author
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

In pharmaceutical research, particularly in the preclinical stages of drug discovery, quantitative structure-activity relationship (QSAR) is being increasingly utilized to avoid costly experimentation and tedious extraction of relevant information from big chemical databases. QSAR modelling is also used in modelling environmental toxicity of chemicals. In the current study, toxicity (pLC50/pIGC50) to Pimephales promelas and Tetrahymena pyriformis has been investigated by using electrophilicity index, its square and cubic terms. Hydrophobicity is known as one of the important predictors, and accordingly it has also been employed to improve the models. The widely used multiple linear regression (MLR) method has been implemented to determine regression coefficients indicating the predictive power of the descriptors used.

Key words

QSTR Global electronic descriptor Hydrophobicity Multiple linear regression (MLR) Pimephales promelas Tetrahymena pyriformis 

Notes

Acknowledgments

PKC would like to thank the Volume Editor, Prof. Kunal Roy, for kindly inviting him to contribute a chapter entitled, “Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity” for the book Ecotoxicological QSARs. He also thanks DST, New Delhi, for the J. C. Bose National Fellowship. SS thanks CSE for the computational facilities. GJ and RP thank IIT, Kharagpur, and CSIR, respectively, for their fellowships.

References

  1. 1.
    Cros A (1863) Action de l'alcool amylique sur l’organisme. Faculté de médecine de Strasbourg, FranceGoogle Scholar
  2. 2.
    Brown AC, Fraser TR (1868) V.—On the connection between chemical constitution and physiological action. Part. I.—On the physiological action of the salts of the ammonium bases, derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia. Earth Environ Sci Trans R Soc Edinburgh 25:151–203Google Scholar
  3. 3.
    Richardson B (1869) Physiological research on alcohols. Med Times Gazzette 2:703–706Google Scholar
  4. 4.
    Mills EJ (1884) On melting point and boiling point as related to composition. Philos Mag 17:173–187CrossRefGoogle Scholar
  5. 5.
    Richet C (1893) Comptes rendus des seances de la societe de biologie et de ses filiales. Soc Biol Ses Fil 9:775–776Google Scholar
  6. 6.
    Meyer H (1899) The theory of alcohol narcosis [Zur Theorie der Alkoholnarkose] arch. Exp Pathol Pharmakol 42:109–118CrossRefGoogle Scholar
  7. 7.
    Overton CE (1901) Studien über die Narkose zugleich ein Beitrag zur allgemeinen Pharmakologie. Fischer, JenaGoogle Scholar
  8. 8.
    Hammett LP (1935) Some relations between reaction rates and equilibrium constants. Chem Rev 17:125–136CrossRefGoogle Scholar
  9. 9.
    Hammett LP (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J Am Chem Soc 59:96–103CrossRefGoogle Scholar
  10. 10.
    Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc Lond Ser B 127:387–404CrossRefGoogle Scholar
  11. 11.
    Albert A, Rubbo S, Goldacre R, Davey M, Stone J (1945) The influence of chemical constitution on antibacterial activity. Part II: a general survey of the acridine series. Br J Exp Pathol 26:160PubMedCentralGoogle Scholar
  12. 12.
    Albert A (1985) Selective toxicity, 7th edn. Chapman & Hall, London, p 33CrossRefGoogle Scholar
  13. 13.
    Roblin RO Jr, Bell PH (1942) Structure and reactivity of sulphanilamide type compounds. J Am Chem Soc 64:2905–2917CrossRefGoogle Scholar
  14. 14.
    Taft RW Jr (1952) Polar and steric substituent constants for aliphatic and o-benzoate groups from rates of esterification and hydrolysis of esters. J Am Chem Soc 74:3120–3128CrossRefGoogle Scholar
  15. 15.
    Taft R (1956) Separation of polar, steric and resonance effects in reactivity. In: Steric effects in organic chemistry. Wiley, New York, pp 556–675Google Scholar
  16. 16.
    Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178CrossRefGoogle Scholar
  17. 17.
    Hansch C, Fujita T (1964) p-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626CrossRefGoogle Scholar
  18. 18.
    Calais JL (1993) Density-functional theory of atoms and molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. Int J Quantum Chem 47:101–101CrossRefGoogle Scholar
  19. 19.
    Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154CrossRefGoogle Scholar
  20. 20.
    Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874PubMedCrossRefGoogle Scholar
  21. 21.
    Chattaraj PK, Roy D, Giri S, Mukherjee S, Subramanian V, Parthasarathi R, Bultinck P, Van Damme S (2007) An atom counting and electrophilicity based QSTR approach. J Chem Sci 119:475–488CrossRefGoogle Scholar
  22. 22.
    Chattaraj PK, Parr RG (1993) Density functional theory of chemical hardness. In: Chemical hardness. Springer, Berlin/Heidelberg, pp 11–25CrossRefGoogle Scholar
  23. 23.
    Chattaraj PK, Poddar A, Maiti B (2002) Chemical reactivity and dynamics within a density-based quantum mechanical framework. In: Reviews of modern quantum chemistry: a celebration of the contributions of Robert G Parr, vol 2. World Scientific, River Edge, pp 871–935CrossRefGoogle Scholar
  24. 24.
    Chattaraj PK (2009) Chemical reactivity theory: a density functional view. CRC Press, Boca RatonCrossRefGoogle Scholar
  25. 25.
    Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980CrossRefGoogle Scholar
  26. 26.
    Pearson RG (1990) Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev 100:403–425CrossRefGoogle Scholar
  27. 27.
    Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  28. 28.
    Chattaraj PK, Sengupta S (1996) Popular electronic structure principles in a dynamical context. J Phys Chem 100:16126–16130CrossRefGoogle Scholar
  29. 29.
    Chamorro E, Chattaraj PK, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Parthasarathi R, Elango M, Subramanian V, Chattaraj PK (2005) Variation of electrophilicity during molecular vibrations and internal rotations. Theor Chem Acc 113:257–266CrossRefGoogle Scholar
  31. 31.
    Noorizadeh S (2007) Is there a minimum electrophilicity principle in chemical reactions? Chin J Chem 25:1439–1444CrossRefGoogle Scholar
  32. 32.
    Estrada E, Uriarte E (2001) Recent advances on the role of topological indices in drug discovery research. Curr Med Chem 8:1573–1588PubMedCrossRefGoogle Scholar
  33. 33.
    Balaban AT (1995) Chemical graphs: looking back and glimpsing ahead. J Chem Inf Comput Sci 35:339–350CrossRefGoogle Scholar
  34. 34.
    Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35:1039–1045CrossRefGoogle Scholar
  35. 35.
    Kim KH (1993) 3D-quantitative structure-activity relationships: describing hydrophobic interactions directly from 3D structures using a comparative molecular field analysis (CoMFA) approach. Quant Struct-Act Relat 12:232–238CrossRefGoogle Scholar
  36. 36.
    Raevsky O, Skvortsov V (2005) Quantifying hydrogen bonding in QSAR and molecular modeling. SAR QSAR Environ Res 16:287–300PubMedCrossRefGoogle Scholar
  37. 37.
    Kubinyi H (2001) Hydrogen bonding, the last mystery in drug design. In: Pharmacokinetic optimization in drug research. Wiley-VCH:Weinheim, Germany, pp 513–524Google Scholar
  38. 38.
    Aptula AO, Roberts DW (2006) Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity. Chem Res Toxicol 19:1097–1105PubMedCrossRefGoogle Scholar
  39. 39.
    Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856CrossRefGoogle Scholar
  40. 40.
    Pearson RG (1997) Chemical hardness. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  41. 41.
    Chattaraj PK, Parr RG (1993) Density functional theory of chemical hardness. In: Sen KD, Mingos DMP (eds) Chemical hardness, Structure and bonding, vol 80. Springer, BerlinCrossRefGoogle Scholar
  42. 42.
    Pauling L (1960) The nature of the chemical bond, vol 260. Cornell University Press, IthacaGoogle Scholar
  43. 43.
    Sen K, Jorgenson C (1987) Structure and bonding, Electronegativity, vol 66. Springer, BerlinGoogle Scholar
  44. 44.
    Pauling L (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54:3570–3582CrossRefGoogle Scholar
  45. 45.
    Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793CrossRefGoogle Scholar
  46. 46.
    Allred AL, Rochow EG (1958) A scale of electronegativity based on electrostatic force. J Inorg Nucl Chem 5:264–268CrossRefGoogle Scholar
  47. 47.
    Gordy W (1946) A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms. J Chem Phys 14:305–320CrossRefGoogle Scholar
  48. 48.
    Sanderson R (1988) Principles of electronegativity Part I. General nature. J Chem Educ 65:112CrossRefGoogle Scholar
  49. 49.
    Iczkowski RP, Margrave JL (1961) Electronegativity. J Am Chem Soc 83:3547–3551CrossRefGoogle Scholar
  50. 50.
    Klopman G (1968) Chemical reactivity and the concept of charge-and frontier-controlled reactions. J Am Chem Soc 90:223–234CrossRefGoogle Scholar
  51. 51.
    Hinze J, Jaffe HH (1962) Electronegativity. I. Orbital electronegativity of neutral atoms. J Am Chem Soc 84:540–546CrossRefGoogle Scholar
  52. 52.
    Mortier WJ, Ghosh SK, Shankar S (1986) Electronegativity-equalization method for the calculation of atomic charges in molecules. J Am Chem Soc 108:4315–4320CrossRefGoogle Scholar
  53. 53.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  54. 54.
    Parr RG, Weitao Y (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  55. 55.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRefGoogle Scholar
  56. 56.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRefGoogle Scholar
  57. 57.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  58. 58.
    Berkowitz M, Parr RG (1988) Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J Chem Phys 88:2554–2557CrossRefGoogle Scholar
  59. 59.
    Ayers PW (2001) Strategies for computing chemical reactivity indices. Theor Chem Acc 106:271–279CrossRefGoogle Scholar
  60. 60.
    Maynard A, Huang M, Rice W, Covell D (1998) Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc Natl Acad Sci U S A 95:11578–11583PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Parr RG, Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  62. 62.
    Roy D, Pal N, Mitra A, Bultinck P, Parthasarathi R, Subramanian V, Chattaraj PK (2007) An atom counting strategy towards analyzing the biological activity of sex hormones. Eur J Med Chem 42:1365–1369PubMedCrossRefGoogle Scholar
  63. 63.
    Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Electrophilicity index as a possible descriptor of biological activity. Bioorg Med Chem Lett 12:5533–5543CrossRefGoogle Scholar
  64. 64.
    Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2003) Chemical reactivity profiles of two selected polychlorinated biphenyls. J Phys Chem A 107:10346–10352CrossRefGoogle Scholar
  65. 65.
    Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2004) Toxicity analysis of 33′44′5-pentachloro biphenyl through chemical reactivity and selectivity profiles. Curr Sci 86:535Google Scholar
  66. 66.
    Roy D, Parthasarathi R, Subramanian V, Chattaraj PK (2006) An electrophilicity based analysis of toxicity of aromatic compounds towards Tetrahymena pyriformis. QSAR Comb Sci 25:114–122CrossRefGoogle Scholar
  67. 67.
    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Group philicity and electrophilicity as possible descriptors for modeling ecotoxicity applied to chlorophenols. Chem Res Toxicol 19:356–364PubMedCrossRefGoogle Scholar
  68. 68.
    Hermens J, Busser F, Leeuwanch P, Musch A (1985) Quantitative correlation studies between the acute lethal toxicity of 15 organic halides to the guppy (Poecillah Reticulata) and chemical reactivity towards 4-nitrobenzylpyridine. Toxicol Environ Chem 9:219–236CrossRefGoogle Scholar
  69. 69.
    Roberts DW, Schultz TW, Wolf EM, Aptula AO (2009) Experimental reactivity parameters for toxicity modeling: application to the acute aquatic toxicity of SN2 electrophiles to Tetrahymena pyriformis. Chem Res Toxicol 23:228–234CrossRefGoogle Scholar
  70. 70.
    Schultz TW, Netzeva TI, Roberts DW, Cronin MT (2005) Structure − toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, α, β-unsaturated chemicals. Chem Res Toxicol 18:330–341PubMedCrossRefGoogle Scholar
  71. 71.
    Suter GW (1989) Aquatic toxicology and environmental fate: eleventh volume, vol 11. ASTM International Chem Biol Drug Des, PhiladelphiaGoogle Scholar
  72. 72.
    Hansch C, Kurup A, Garg R, Gao H (2001) Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem Rev 101:619–672PubMedCrossRefGoogle Scholar
  73. 73.
    Hansch C, Hoekman D, Leo A, Weininger D, Selassie CD (2002) Chem-bioinformatics: comparative QSAR at the interface between chemistry and biology. Chem Rev 102:783–812PubMedCrossRefGoogle Scholar
  74. 74.
    Roberts D, Williams D (1982) The derivation of quantitative correlations between skin sensitisation and physio-chemical parameters for alkylating agents, and their application to experimental data for sultones. J Theor Biol 99:807–825PubMedCrossRefGoogle Scholar
  75. 75.
    Roberts D, Goodwin B, Williams D, Jones K, Johnson A, Alderson J (1983) Correlations between skin sensitization potential and chemical reactivity for p-nitrobenzyl compounds. Food Chem Toxicol 21:811–813PubMedCrossRefGoogle Scholar
  76. 76.
    Roberts D, Basketter D (1990) A quantitative structure activity/dose response relationship for contact allergic potential of alkyl group transfer agents. Contact Dermatitis 23:331–335PubMedCrossRefGoogle Scholar
  77. 77.
    Roberts DW, Aptula AO, Patlewicz G (2007) Electrophilic chemistry related to skin sensitization. Reaction mechanistic applicability domain classification for a published data set of 106 chemicals tested in the mouse local lymph node assay. Chem Res Toxicol 20:44–60PubMedCrossRefGoogle Scholar
  78. 78.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz, JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Wallingford, CTGoogle Scholar
  79. 79.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR,. Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian 09, Revision D.01, Wallingford CT, vol 121, pp 150–166Google Scholar
  80. 80.
    Pal R, Jana G, Sural S, Chattaraj PK (2018) Hydrophobicity versus electrophilicity: a new protocol toward quantitative structure–toxicity relationship. Chem Bio Drug Des 93:1083–1095.  https://doi.org/10.1111/cbdd.13428CrossRefGoogle Scholar
  81. 81.
    Bertinetto C, Duce C, Solaro R, Héberger K (2013) Modeling of the acute toxicity of benzene derivatives by complementary QSAR methods. MATCH Commun Math Comput Chem 70:1005–1021Google Scholar
  82. 82.
    Jana G, Pal R, Sural S, Chattaraj PK (2019) Quantitative structure – toxicity relationship: an “in silico study” using electrophilicity and hydrophobicity as descriptors. Int J Quantum Chem (Provisionally accepted)Google Scholar
  83. 83.
    Schultz TW (1997) TETRATOX database. Toxicol Methods 7:289. http://www.vet.utk.edu/TETRATOX/CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Theoretical StudiesIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  3. 3.Department of ChemistryIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations