Advertisement

QSAR Approaches and Ecotoxicological Risk Assessment

  • Mabrouk Hamadache
  • Othmane Benkortbi
  • Abdeltif AmraneEmail author
  • Salah Hanini
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Hundreds of thousands of chemicals that can affect human health or the quality of aquatic and terrestrial ecosystems are introduced directly or indirectly into the air, water, or soil. Therefore, the awareness of the serious and harmful effects caused by these chemical compounds has revealed the absolute and compelling need to resort to the evaluation of potential risks incurred as a result of exposure to these compounds. In the aim to provide a high level of protection for human, animal, and environmental health, many regulatory agencies have established strict legislation for both toxicological and ecotoxicological risk assessments of existing and new chemical compounds. To limit the in vivo experiments which are a tedious and costly practice and generate a large sacrifice of animals, the REACH regulation recommends the use of in silico methods, such as quantitative structure–activity relationship (QSAR) models.

Key words

Ecosystems Pollutants Ecotoxicity QSAR models Adverse effects 

References

  1. 1.
    Ceriani L, Papa E, Kovarich S, Boethling R, Gramatica P (2015) Modeling ready biodegradability of fragrance materials. Environ Toxicol Chem 34(6):1224–1231PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Gajewicz A (2017) What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps. Nanoscale 9(24):8435–8448PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kleandrova VV, Luan F, González-Díaz H, Ruso JM, Speck-Planche A, Cordeiro MN (2014) Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ Sci Technol 48(24):14686–14694CrossRefGoogle Scholar
  4. 4.
    Aubakirova B, Beisenova R, Boxall AB (2017) Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan. Integr Environ Assess Manag 13(5):832–839PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2017) Computational methodologies for the risk assessment of pesticides in the European Union. J Agric Food Chem 65(10):2017.  https://doi.org/10.1021/acs.jafc.7b00516CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Riva F, Zuccato E, Davoli E, Fattore E, Castiglioni S (2019) Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J Hazard Mater 361:103–110PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Raitano G, Goi D, Pieri V, Passoni A, Mattiussi M, Lutman A, Romeo I, Manganaro A, Marzo M, Porta N (2018) (Eco) toxicological maps: a new risk assessment method integrating traditional and in silico tools and its application in the Ledra River (Italy). Environ Int 119:275–286PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Van den Brink PJ, Boxall AB, Maltby L, Brooks BW, Rudd MA, Backhaus T, Spurgeon D, Verougstraete V, Ajao C, Ankley GT (2018) Toward sustainable environmental quality: priority research questions for Europe. Environ Toxicol Chem 37(9):2281–2295PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Musee N (2011) Nanotechnology risk assessment from a waste management perspective: are the current tools adequate? Hum Exp Toxicol 30(8):820–835PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hamadache M, Benkortbi O, Hanini S, Amrane A (2018) QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.). Environ Sci Pollut Res 25(1):896–907CrossRefGoogle Scholar
  11. 11.
    Ortiz-Santaliestra ME, Maia JP, Egea-Serrano A, Lopes I (2018) Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment. Ecotoxicology 27(7):819–833PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Grech A, Brochot C, Dorne J-L, Quignot N, Bois FY, Beaudouin R (2017) Toxicokinetic models and related tools in environmental risk assessment of chemicals. Sci Total Environ 578:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Papa E, van der Wal L, Arnot JA, Gramatica P (2014) Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis. Sci Total Environ 470:1040–1046PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Villaverde JJ, Sevilla-Moran B, López-Goti C, Alonso-Prados JL, Sandín-España P (2018) Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. Sci Total Environ 634:1530–1539PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic, London, pp 1–46CrossRefGoogle Scholar
  16. 16.
    Roy K, Kar S, Das RN (2015) A primer on QSAR/QSPR modeling: fundamental concepts. Springer, Cham, pp 1–35Google Scholar
  17. 17.
    Devillers J. (2008) Artificial Neural Network Modeling in Environmental Toxicology. In: Livingstone D.J. (eds) Artificial Neural Networks. Methods in Molecular Biology™, vol 458. Humana Press, Switzerland, pp 59–77Google Scholar
  18. 18.
    Ihedioha J, Ukoha P, Ekere N (2017) Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environ Geochem Health 39(3):497–515PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ma L, Sun J, Yang Z, Wang L (2015) Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environ Monit Assess 187(12):731.  https://doi.org/10.1007/s10661-015-4966-8CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Weissmannová HD, Pavlovský J (2017) Indices of soil contamination by heavy metals–methodology of calculation for pollution assessment (minireview). Environ Monit Assess 189(12):616.  https://doi.org/10.1007/s10661-017-6340-5CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sapcanin A, Cakal M, Imamovic B, Salihovic M, Pehlic E, Jacimovic Z, Jancan G (2016) Herbicide and pesticide occurrence in the soils of children’s playgrounds in Sarajevo, Bosnia and Herzegovina. Environ Monit Assess 188(8):450.  https://doi.org/10.1007/s10661-016-5463-4CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hamadache M, Khaouane L, Benkortbi O, Si Moussa C, Hanini S, Amrane A (2014) Prediction of acute herbicide toxicity in rats from quantitative structure–activity relationship modeling. Environ Eng Sci 31(5):243–252CrossRefGoogle Scholar
  24. 24.
    Chowdhary P, Raj A, Bharagava RN (2018) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review. Chemosphere 194:229–246PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Chaza C, Sopheak N, Mariam H, David D, Baghdad O, Moomen B (2018) Assessment of pesticide contamination in Akkar groundwater, northern Lebanon. Environ Sci Pollut Res 25(15):14302–14312CrossRefGoogle Scholar
  26. 26.
    Pattnaik P, Dangayach G, Bhardwaj AK (2018) A review on the sustainability of textile industries wastewater with and without treatment methodologies. Rev Environ Health 33(2):163–203PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Shen Z, Zhang Y, Jin F, Alessi DS, Zhang Y, Wang F, McMillan O, Al-Tabbaa A (2018) Comparison of nickel adsorption on biochars produced from mixed softwood and Miscanthus straw. Environ Sci Pollut Res 25(15):14626–14635CrossRefGoogle Scholar
  28. 28.
    Ahmed DA, Slima DF (2018) Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater. Environ Sci Pollut Res 25(15):14996–15005CrossRefGoogle Scholar
  29. 29.
    Pereira R, Cachada A, Sousa JP, Niemeyer J, Markwiese J, Andersen CP (2018) Ecotoxicological effects and risk assessment of pollutants. In: Soil pollution. Academic Press, Elsevier, Cambridge, Massachusetts, pp 191–216CrossRefGoogle Scholar
  30. 30.
    Borgese L, Federici S, Zacco A, Gianoncelli A, Rizzo L, Smith D, Donna F, Lucchini R, Depero L, Bontempi E (2013) Metal fractionation in soils and assessment of environmental contamination in Vallecamonica, Italy. Environ Sci Pollut Res 20(7):5067–5075CrossRefGoogle Scholar
  31. 31.
    Ferrante M, Fiore M, Ledda C, Cicciù F, Alonzo E, Fallico R, Platania F, Di RM, Valenti L, Sciacca S (2013) Monitoring of heavy metals and trace elements in the air, fruits and vegetables and soil in the province of Catania (Italy). Ig Sanita Pubbl 69(1):47–54PubMedGoogle Scholar
  32. 32.
    Özkul C (2016) Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey). Environ Monit Assess 188(5):284.  https://doi.org/10.1007/s10661-016-5295-2CrossRefPubMedGoogle Scholar
  33. 33.
    Uzen N, Cetin O, Unlu M (2016) Effects of domestic wastewater treated by anaerobic stabilization on soil pollution, plant nutrition, and cotton crop yield. Environ Monit Assess 188(12):664.  https://doi.org/10.1007/s10661-016-5680-xCrossRefPubMedGoogle Scholar
  34. 34.
    Mirzaei M, Marofi S, Solgi E, Abbasi M, Karimi R, Bakhtyari HRR (2019) Ecological and health risks of soil and grape heavy metals in long-term fertilized vineyards (Chaharmahal and Bakhtiari province of Iran). Environ Geochem Health 1–17.  https://doi.org/10.1007/s10653-019-00242-5
  35. 35.
    Popov BB, Hristova VK, Ahmad MA, Petrovska M (2014) Monitoring of heavy metals and trace elements contamination in the soil and vegetables and air pollution in the Republic of Macedonia. Int J Enhanced Res Sci Technol Eng 3(1):205–214Google Scholar
  36. 36.
    Arcega-Cabrera F, Fargher L, Quesadas-Rojas M, Moo-Puc R, Oceguera-Vargas I, Noreña-Barroso E, Yáñez-Estrada L, Alvarado J, González L, Pérez-Herrera N (2018) Environmental exposure of children to toxic trace elements (Hg, Cr, As) in an urban area of Yucatan, Mexico: water, blood, and urine levels. Bull Environ Contam Toxicol 100(5):620–626PubMedCrossRefGoogle Scholar
  37. 37.
    Stepanova N, Fomina S, Valeeva E, Ziyatdinova A (2018) Heavy metals as criteria of health and ecological well-being of the urban environment. J Trace Elem Med Biol 50:646–651PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Vongdala N, Tran H-D, Xuan T, Teschke R, Khanh T (2019) Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int J Environ Res Public Health 16(1):22.  https://doi.org/10.3390/ijerph16010022CrossRefGoogle Scholar
  39. 39.
    Bai H, Hu B, Wang C, Bao S, Sai G, Xu X, Zhang S, Li Y (2017) Assessment of radioactive materials and heavy metals in the surface soil around the Bayanwula prospective uranium mining area in China. Environ Res Public Health 14(3):300.  https://doi.org/10.3390/ijerph14030300CrossRefGoogle Scholar
  40. 40.
    He B, Zhao X, Li P, Liang J, Fan Q, Ma X, Zheng G, Qiu J (2019) Lead isotopic fingerprinting as a tracer to identify the pollution sources of heavy metals in the southeastern zone of Baiyin, China. Sci Total Environ 660:348–357PubMedCrossRefGoogle Scholar
  41. 41.
    Kong X, Liu T, Yu Z, Chen Z, Lei D, Wang Z, Zhang H, Li Q, Zhang S (2018) Heavy metal bioaccumulation in rice from a high geological background area in Guizhou Province, China. Environ Res Public Health 15(10):2281.  https://doi.org/10.3390/ijerph15102281CrossRefGoogle Scholar
  42. 42.
    Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15PubMedCrossRefGoogle Scholar
  43. 43.
    Tang Z, Chai M, Cheng J, Jin J, Yang Y, Nie Z, Huang Q, Li Y (2017) Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicol Environ Saf 138:83–91PubMedCrossRefGoogle Scholar
  44. 44.
    Tang Z, Zhang L, Huang Q, Yang Y, Nie Z, Cheng J, Yang J, Wang Y, Chai M (2015) Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicol Environ Saf 122:343–351PubMedCrossRefGoogle Scholar
  45. 45.
    Xiao R, Wang S, Li R, Wang JJ, Zhang Z (2017) Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol Environ Saf 141:17–24PubMedCrossRefGoogle Scholar
  46. 46.
    Toichuev RM, Zhilova LV, Makambaeva GB, Payzildaev TR, Pronk W, Bouwknegt M, Weber R (2018) Assessment and review of organochlorine pesticide pollution in Kyrgyzstan. Environ Sci Pollut Res 25(32):31836–31847CrossRefGoogle Scholar
  47. 47.
    El-Saeid M, Al-Turki A, Al-Wable M, Abdel-Nasser G (2011) Evaluation of pesticide residues in Saudi Arabia ground water. Res J Environ Sci 5(2):171–178CrossRefGoogle Scholar
  48. 48.
    Al-Wabel M, El-Saeid M, Al-Turki A, Abdel-Nasser G (2011) Monitoring of pesticide residues in Saudi Arabia agricultural soils. Res J Environ Sci 5(3):269–278CrossRefGoogle Scholar
  49. 49.
    Jung Min Ahn SK-SK (2019) Selection of priority management of rivers by assessing heavy metal pollution and ecological risk of surface sediments. Environ Geochem Health.  https://doi.org/10.1007/s10653-019-00284-9
  50. 50.
    Ruiz-Guerra I, Molina-Moreno V, Cortés-García FJ, Núñez-Cacho P (2019) Prediction of the impact on air quality of the cities receiving cruise tourism: the case of the Port of Barcelona. Heliyon 5(3):e01280.  https://doi.org/10.1016/j.heliyon.2019.e01280CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Drif F, Abdennour C, Ciğerci İH, Ali MM, Mansouri O, Messarah M (2019) Preliminary assessment of stress and genotoxicity biomarkers in bivalve molluscs from the Gulf of Annaba, Algeria. Bull Environ Contam Toxicol 102:1–5.  https://doi.org/10.1007/s00128-019-02583-4CrossRefGoogle Scholar
  52. 52.
    Rebhi A, Lounici H, Lahrech M, Morel J (2018) Response of Artemisia herba alba to hexavalent chromium pollution under arid and semi-arid conditions. Int J Phytoremediation 21:1–6.  https://doi.org/10.1080/15226514.2018.1524841CrossRefGoogle Scholar
  53. 53.
    Bouaroudj S, Menad A, Bounamous A, Ali-Khodja H, Gherib A, Weigel DE, Chenchouni H (2019) Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere 219:76–88PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Rabhi L, Lemou A, Cecinato A, Balducci C, Cherifi N, Ladji R, Yassaa N (2018) Polycyclic aromatic hydrocarbons, phthalates, parabens and other environmental contaminants in dust and suspended particulates of Algiers, Algeria. Environ Sci Pollut Res 25(24):24253–24265CrossRefGoogle Scholar
  55. 55.
    Narsimha A, Qian H, Wang H (2019) Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: an approach of spatial distribution and multivariate statistical analysis. Environ Monit Assess 191:246.  https://doi.org/10.1007/s10661-019-7408-1CrossRefGoogle Scholar
  56. 56.
    Rather MY, Tilwani YM, Dey A (2019) Assessment of heavy metal contamination in two edible fish species Carassius carassius and Triplophysa kashmirensis of Dal Lake, Srinagar, Kashmir, India. Environ Monit Assess 191(4):242.  https://doi.org/10.1007/s10661-019-7382-7CrossRefPubMedGoogle Scholar
  57. 57.
    Rinklebe J, Antoniadis V, Shaheen SM, Rosche O, Altermann M (2019) Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ Int 126:76–88PubMedCrossRefGoogle Scholar
  58. 58.
    Al-Omari A, Farhan I, Kandakji T (2019) Zarqa River pollution: impact on its quality. Environ Monit Assess 191(3):166.  https://doi.org/10.1007/s10661-019-7283-9CrossRefPubMedGoogle Scholar
  59. 59.
    Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48(2):463–487PubMedCrossRefGoogle Scholar
  60. 60.
    Eid EM, Shaltout KH, Moghanm FS, Youssef MS, El-Mohsnawy E, Haroun SA (2019) Bioaccumulation and translocation of nine heavy metals by Eichhornia crassipes in Nile Delta, Egypt: perspectives for phytoremediation. Int J Phytoremediation 21:1–10.  https://doi.org/10.1080/15226514.2019.1566885CrossRefGoogle Scholar
  61. 61.
    Rahman Z, Singh VP (2018) Assessment of heavy metal contamination and Hg-resistant bacteria in surface water from different regions of Delhi, India. Saudi J Biol Sci 25(8):1687–1695PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Saddik M, Fadili A, Makan A (2019) Assessment of heavy metal contamination in surface sediments along the Mediterranean coast of Morocco. Environ Monit Assess 191(3):197.  https://doi.org/10.1007/s10661-019-7332-4CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510.  https://doi.org/10.1021/acs.chemrev.8b00299CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sarma GK, Gupta SS, Bhattacharyya KG (2019) Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ Sci Pollut Res 26:1–34.  https://doi.org/10.1007/s11356-018-04093-yCrossRefGoogle Scholar
  65. 65.
    Xia F, Qu L, Wang T, Luo L, Chen H, Dahlgren RA, Zhang M, Mei K, Huang H (2018) Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 207:218–228PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Soleimanifar H, Deng Y, Barrett K, Feng H, Li X, Sarkar D (2019) Water treatment residual-coated wood mulch for addressing urban stormwater pollution. Water Environ Res 91:523.  https://doi.org/10.1002/wer.1055CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mohanakavitha T, Divahar R, Meenambal T, Shankar K, Rawat VS, Haile TD, Gadafa C (2019) Dataset on the assessment of water quality of surface water in Kalingarayan Canal for heavy metal pollution, Tamil Nadu. Data Brief 22:878–884PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Siddiqui E, Pandey J (2019) Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environ Sci Pollut Res 26(11):10926–10940PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sabarathinam C, Bhandary H, Al-Khalid A (2019) A geochemical analogy between the metal sources in Kuwait Bay and territorial sea water of Kuwait. Environ Monit Assess 191(3):142PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Deng T, Wu L, Gao J-M, Zhou B, Zhang Y-L, Wu W-N, Tang Z-H, Jiang W-C, Huang W-L (2018) Occurrence and health risk assessment of organotins in waterworks and the source water of the Three Gorges Reservoir Region, China. Environ Sci Pollut Res 25(15):15019–15028CrossRefGoogle Scholar
  71. 71.
    Mahdavinia GR (2018) Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium. Environ Sci Pollut Res 25(15):14977–14988CrossRefGoogle Scholar
  72. 72.
    Deknock A, De Troyer N, Houbraken M, Dominguez-Granda L, Nolivos I, Van Echelpoel W, Forio MAE, Spanoghe P, Goethals P (2019) Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador). Sci Total Environ 646:996–1008PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Gunawardena A, Wijeratne E, White B, Hailu A, Pandit R (2017) Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka. Environ Monit Assess 189(9):457.  https://doi.org/10.1007/s10661-017-6172-3CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tang X-Y, Yang Y, Tam NF-Y, Tao R, Dai Y-N (2019) Pesticides in three rural rivers in Guangzhou, China: spatiotemporal distribution and ecological risk. Environ Sci Pollut Res 26(4):3569–3577CrossRefGoogle Scholar
  75. 75.
    Megahed AM, Dahshan H, Abd-El-Kader MA, Abd-Elall AMM, Elbana MH, Nabawy E, Mahmoud HA (2015) Polychlorinated biphenyls water pollution along the River Nile, Egypt. Sci World J 2015:1CrossRefGoogle Scholar
  76. 76.
    Ibrahim IM, Gilfoyle L, Reynolds R, Voulvoulis N (2019) Integrated catchment management for reducing pesticide levels in water: engaging with stakeholders in East Anglia to tackle metaldehyde. Sci Total Environ 656:1436–1447CrossRefGoogle Scholar
  77. 77.
    Nguyen LD, Gassara S, Bui MQ, Zaviska F, Sistat P, Deratani A (2019) Desalination and removal of pesticides from surface water in Mekong Delta by coupling electrodialysis and nanofiltration. Environ Sci Pollut Res https://doi.org/10.1007/s11356-018-3918-6PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Rocha O, Neto AJG, dos Santos Lima JC, Freitas EC, Miguel M, da Silva MA, Moreira RA, Daam MA (2018) Sensitivities of three tropical indigenous freshwater invertebrates to single and mixture exposures of diuron and carbofuran and their commercial formulations. Ecotoxicology 27(7):834–844PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Gaullier C, Dousset S, Billet D, Baran N (2018) Is pesticide sorption by constructed wetland sediments governed by water level and water dynamics? Environ Sci Pollut Res 25(15):14324–14335CrossRefGoogle Scholar
  80. 80.
    Schreiner VC, Szöcs E, Bhowmik AK, Vijver MG, Schäfer RB (2016) Pesticide mixtures in streams of several European countries and the USA. Sci Total Environ 573:680–689PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Dromard CR, Guéné M, Bouchon-Navaro Y, Lemoine S, Cordonnier S, Bouchon C (2018) Contamination of marine fauna by chlordecone in Guadeloupe: evidence of a seaward decreasing gradient. Environ Sci Pollut Res 25(15):14294–14301CrossRefGoogle Scholar
  82. 82.
    dos Santos CF, da Costa SN, Santos RFB, Meneses JO, do Couto MVS, de Almeida FTC, de Sena Filho JG, Carneiro PCF, Maria AN, Fujimoto RY (2018) Deltamethrin-induced nuclear erythrocyte alteration and damage to the gills and liver of Colossoma macropomum. Environ Sci Pollut Res 25(15):15102–15110CrossRefGoogle Scholar
  83. 83.
    Tsaboula A, Papadakis E-N, Vryzas Z, Kotopoulou A, Kintzikoglou K, Papadopoulou-Mourkidou E (2019) Assessment and management of pesticide pollution at a river basin level part I: aquatic ecotoxicological quality indices. Sci Total Environ 653:1597–1611PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    El Zrelli R, Rabaoui L, Alaya MB, Daghbouj N, Castet S, Besson P, Michel S, Bejaoui N, Courjault-Radé P (2018) Seawater quality assessment and identification of pollution sources along the central coastal area of Gabes Gulf (SE Tunisia): evidence of industrial impact and implications for marine environment protection. Mar Pollut Bull 127:445–452PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hussain B, Sultana T, Sultana S, Al-Mulhim N, Mahboob S (2018) Pollutant fate and spatio-temporal variation and degree of sedimentation of industrial-and municipal wastes in Chakbandi drain and River Chenab. Saudi J Biol Sci 25(7):1326–1331PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Njuguna SM, Yan X, Gituru RW, Wang Q, Wang J (2017) Assessment of macrophyte, heavy metal, and nutrient concentrations in the water of the Nairobi River, Kenya. Environ Monit Assess 189(9):454.  https://doi.org/10.1007/s10661-017-6159-0CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Medeiros AC, Faial KRF, Faial KCF, da Silva Lopes ID, de Oliveira LM, Guimarães RM, Mendonça NM (2017) Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil. Mar Pollut Bull 123(1–2):156–164PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199CrossRefGoogle Scholar
  89. 89.
    Anbumani S, Kakkar P (2018) Ecotoxicological effects of microplastics on biota: a review. Environ Sci Pollut Res Int 25(15):14373–14396PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Azuma T, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Mino Y, Hayashi T (2018) Performance and efficiency of removal of pharmaceutical compounds from hospital wastewater by lab-scale biological treatment system. Environ Sci Pollut Res 25(15):14647–14655CrossRefGoogle Scholar
  91. 91.
    Herbort AF, Sturm MT, Schuhen K (2018) A new approach for the agglomeration and subsequent removal of polyethylene, polypropylene, and mixtures of both from freshwater systems–a case study. Environ Sci Pollut Res 25(15):15226–15234CrossRefGoogle Scholar
  92. 92.
    Le Guet T, Hsini I, Labanowski J, Mondamert L (2018) Sorption of selected pharmaceuticals by a river sediment: role and mechanisms of sediment or Aldrich humic substances. Environ Sci Pollut Res 25(15):14532–14543CrossRefGoogle Scholar
  93. 93.
    Pereira BV, Matus GN, Costa MJ, Dos Santos ACA, Silva-Zacarin EC, do Carmo JB, Nunes B (2018) Assessment of biochemical alterations in the neotropical fish species Phalloceros harpagos after acute and chronic exposure to the drugs paracetamol and propranolol. Environ Sci Pollut Res 25(15):14899–14910CrossRefGoogle Scholar
  94. 94.
    Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN (2018) The Lancet Commission on pollution and health. Lancet 391(10119):462–512PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Alias C, Benassi L, Bertazzi L, Sorlini S, Volta M, Gelatti U (2019) Environmental exposure and health effects in a highly polluted area of Northern Italy: a narrative review. Environ Sci Pollut Res 26(5):4555–4569PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Basu N, Lanphear BP (2019) The challenge of pollution and health in Canada. Can J Public Health 110(2):159–164PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Xing L, Wang L, Zhang R (2018) Characteristics and health risk assessment of volatile organic compounds emitted from interior materials in vehicles: a case study from Nanjing, China. Environ Sci Pollut Res 25(15):14789–14798CrossRefGoogle Scholar
  98. 98.
    DuPont A (2018) Improving and monitoring air quality. Environ Sci Pollut Res 25(15):15253–15263CrossRefGoogle Scholar
  99. 99.
    Hanif I (2018) Impact of economic growth, nonrenewable and renewable energy consumption, and urbanization on carbon emissions in Sub-Saharan Africa. Environ Sci Pollut Res 25(15):15057–15067CrossRefGoogle Scholar
  100. 100.
    Afsar B, Elsurer Afsar R, Kanbay A, Covic A, Ortiz A, Kanbay M (2018) Air pollution and kidney disease: review of current evidence. Clin Kidney J 12(1):19–32PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    de Luna MDG, Laciste MT, Tolosa NC, Lu M-C (2018) Effect of catalyst calcination temperature in the visible light photocatalytic oxidation of gaseous formaldehyde by multi-element doped titanium dioxide. Environ Sci Pollut Res 25(15):15216–15225CrossRefGoogle Scholar
  102. 102.
    Ishtiaq M, Jehan N, Khan SA, Muhammad S, Saddique U, Iftikhar B (2018) Potential harmful elements in coal dust and human health risk assessment near the mining areas in Cherat, Pakistan. Environ Sci Pollut Res 25(15):14666–14673CrossRefGoogle Scholar
  103. 103.
    Fei X, Lou Z, Christakos G, Ren Z, Liu Q, Lv X (2018) The association between heavy metal soil pollution and stomach cancer: a case study in Hangzhou city, China. Environ Geochem Health 40(6):2481–2490PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Yajima I, Zou C, Li X, Nakano C, Omata Y, Kumasaka M (2015) Analysis of heavy-metal-mediated disease and development of a novel remediation system based on fieldwork and experimental research. Nihon Eiseigaku Zasshi 70(2):105–109PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Lin W-W, Chen Z-X, Kong M-L, Xie Y-Q, Zeng X-W (2017) Air pollution and children’s health in Chinese. In: Ambient air pollution and health impact in China. Springer, Singapore, pp 153–180Google Scholar
  106. 106.
    Sun H (2018) Association of soil selenium, strontium, and magnesium concentrations with Parkinson’s disease mortality rates in the USA. Environ Geochem Health 40(1):349–357PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Tsai CC, Wu CL, Kor CT, Lian IB, Chang CH, Chang TH, Chang CC, Chiu PF (2018) Prospective associations between environmental heavy metal exposure and renal outcomes in adults with chronic kidney disease. Nephrology 23(9):830–836PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Pratush A, Kumar A, Hu Z (2018) Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 21(3):97–106PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Cui X, Cheng H, Liu X, Giubilato E, Critto A, Sun H, Zhang L (2018) Cadmium exposure and early renal effects in the children and adults living in a tungsten-molybdenum mining areas of South China. Environ Sci Pollut Res 25(15):15089–15101CrossRefGoogle Scholar
  110. 110.
    Dada OA, Adekola FA, Odebunmi EO (2016) Kinetics and equilibrium models for sorption of Cu (II) onto a novel manganese nano-adsorbent. J Dispers Sci Technol 37(1):119–133CrossRefGoogle Scholar
  111. 111.
    Eklund B, Watermann B (2018) Persistence of TBT and copper in excess on leisure boat hulls around the Baltic Sea. Environ Sci Pollut Res 25(15):14595–14605CrossRefGoogle Scholar
  112. 112.
    Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25(15):15159–15173CrossRefGoogle Scholar
  113. 113.
    Brouwer M, Huss A, van der Mark M, Nijssen PC, Mulleners WM, Sas AM, Van Laar T, de Snoo GR, Kromhout H, Vermeulen RC (2017) Environmental exposure to pesticides and the risk of Parkinson’s disease in the Netherlands. Environ Int 107:100–110PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Hamadache M, Benkortbi O, Hanini S, Amrane A, Khaouane L, Moussa CS (2016) A quantitative structure activity relationship for acute oral toxicity of pesticides on rats: validation, domain of application and prediction. J Hazard Mater 303:28–40PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Hamadache M, Hanini S, Benkortbi O, Amrane A, Khaouane L, Moussa CS (2016) Artificial neural network-based equation to predict the toxicity of herbicides on rats. Chemom Intell Lab Syst 154:7–15CrossRefGoogle Scholar
  116. 116.
    Kim J, Swartz M, Langlois P, Romitti P, Weyer P, Mitchell L, Luben T, Ramakrishnan A, Malik S, Lupo P (2017) Estimated maternal pesticide exposure from drinking water and heart defects in offspring. Environ Res Public Health 14(8):889CrossRefGoogle Scholar
  117. 117.
    Guibal R, Lissalde S, Leblanc J, Cleries K, Charriau A, Poulier G, Mazzella N, Rebillard J-P, Brizard Y, Guibaud G (2017) Two sampling strategies for an overview of pesticide contamination in an agriculture-extensive headwater stream. Environ Sci Pollut Res 25(15):14280–14293PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Costa R, Pereira JL, Santos MA, Pacheco M, Guilherme S (2018) The role of contamination history and gender on the genotoxic responses of the crayfish Procambarus clarkii to a penoxsulam-based herbicide. Ecotoxicology 27(7):908–918PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Harmouche-Karaki M, Matta J, Helou K, Mahfouz Y, Fakhoury-Sayegh N, Narbonne J-F (2018) Serum concentrations of selected organochlorine pesticides in a Lebanese population and their associations to sociodemographic, anthropometric and dietary factors: ENASB study. Environ Sci Pollut Res 25(15):14350–14360CrossRefGoogle Scholar
  120. 120.
    Boyle NK, Sheppard WS (2017) A scientific note on seasonal levels of pesticide residues in honey bee worker tissues. Apidologie 48(1):128–130CrossRefGoogle Scholar
  121. 121.
    Heard MS, Baas J, Dorne J-L, Lahive E, Robinson AG, Rortais A, Spurgeon DJ, Svendsen C, Hesketh H (2017) Comparative toxicity of pesticides and environmental contaminants in bees: are honey bees a useful proxy for wild bee species? Sci Total Environ 578:357–365PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Hallmann CA, Foppen RP, van Turnhout CA, de Kroon H, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511(7509):341PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Sánchez-Bayo F, Goka K, Hayasaka D (2016) Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front Environ Sci 4:71.  https://doi.org/10.3389/fenvs.2016.00071CrossRefGoogle Scholar
  124. 124.
    Can A, Yildiz I, Guvendik G (2013) The determination of toxicities of sulphonylurea and phenylurea herbicides with quantitative structure–toxicity relationship (QSTR) studies. Environ Toxicol Pharmacol 35(3):369–379PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Basant N, Gupta S, Singh KP (2015) Predicting toxicities of diverse chemical pesticides in multiple avian species using tree-based QSAR approaches for regulatory purposes. J Chem Inf Model 55(7):1337–1348PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Basant N, Gupta S, Singh KP (2016) Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches. Toxicol Res 5(1):340–353CrossRefGoogle Scholar
  127. 127.
    Sun L, Zhang C, Chen Y, Li X, Zhuang S, Li W, Liu G, Lee PW, Tang Y (2015) In silico prediction of chemical aquatic toxicity with chemical category approaches and substructural alerts. Toxicol Res 4(2):452–463CrossRefGoogle Scholar
  128. 128.
    Toropov AA, Toropova AP, Marzo M, Dorne JL, Georgiadis N, Benfenati E (2017) QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA’s OpenFoodTox database. Environ Toxicol Pharmacol 53:158–163PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Qin L-T, Chen Y-H, Zhang X, Mo L-Y, Zeng H-H, Liang Y-P (2018) QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere 198:122–129PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Khan PM, Roy K, Benfenati E (2019) Chemometric modeling of Daphnia magna toxicity of agrochemicals. Chemosphere 224:470.  https://doi.org/10.1016/j.chemosphere.2019.02.147CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Villaverde JJ, Sevilla-Morán B, López-Goti C, Calvo L, Alonso-Prados JL, Sandín-España P (2018) Photolysis of clethodim herbicide and a formulation in aquatic environments: fate and ecotoxicity assessment of photoproducts by QSAR models. Sci Total Environ 615:643–651PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Como F, Carnesecchi E, Volani S, Dorne J, Richardson J, Bassan A, Pavan M, Benfenati E (2017) Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model. Chemosphere 166:438–444PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Roy K, Das RN (2013) QSTR with extended topochemical atom (ETA) indices. 16. Development of predictive classification and regression models for toxicity of ionic liquids towards Daphnia magna. J Hazard Mater 254:166–178PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Roy K, Das RN, Popelier PL (2014) Quantitative structure–activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity. Chemosphere 112:120–127PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Ma S, Lv M, Deng F, Zhang X, Zhai H, Lv W (2015) Predicting the ecotoxicity of ionic liquids towards Vibrio fischeri using genetic function approximation and least squares support vector machine. J Hazard Mater 283:591–598PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Das RN, Sintra TE, Coutinho JA, Ventura SP, Roy K, Popelier PL (2016) Development of predictive QSAR models for Vibrio fischeri toxicity of ionic liquids and their true external and experimental validation tests. Toxicol Res 5(5):1388–1399CrossRefGoogle Scholar
  137. 137.
    Das RN, Roy K, Popelier PL (2015) Interspecies quantitative structure–toxicity–toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus. Ecotoxicol Environ Saf 122:497–520PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Ghanem OB, Mutalib MA, Lévêque J-M, El-Harbawi M (2017) Development of QSAR model to predict the ecotoxicity of Vibrio fischeri using COSMO-RS descriptors. Chemosphere 170:242–250PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    He W, Yan F, Jia Q, Xia S, Wang Q (2018) QSAR models for describing the toxicological effects of ILs against Staphylococcus aureus based on norm indexes. Chemosphere 195:831–838PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Khan MI, Zaini D, Shariff AM, Moniruzzaman M (2018) Probabilistic ecotoxicological risk assessment of imidazolium ionic liquids with amino acid and halide anions. J Mech Eng Sci 12(3):3798–3810CrossRefGoogle Scholar
  141. 141.
    Kar S, Roy K (2010) First report on interspecies quantitative correlation of ecotoxicity of pharmaceuticals. Chemosphere 81(6):738–747PubMedCrossRefGoogle Scholar
  142. 142.
    Das RN, Sanderson H, Mwambo AE, Roy K (2013) Preliminary studies on model development for rodent toxicity and its interspecies correlation with aquatic toxicities of pharmaceuticals. Bull Environ Contam Toxicol 90(3):375–381PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    De García SAO, Pinto GP, García-Encina PA, Irusta-Mata R (2014) Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 23(8):1517–1533CrossRefGoogle Scholar
  144. 144.
    Sangion A, Gramatica P (2016) Ecotoxicity interspecies QAAR models from Daphnia toxicity of pharmaceuticals and personal care products. SAR QSAR Environ Res 27(10):781–798PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Sangion A, Gramatica P (2016) Hazard of pharmaceuticals for aquatic environment: prioritization by structural approaches and prediction of ecotoxicity. Environ Int 95:131–143PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Khan K, Benfenati E, Roy K (2019) Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: ranking and prioritization of the DrugBank database compounds. Ecotoxicol Environ Saf 168:287–297PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Singh KP, Gupta S, Kumar A, Mohan D (2014) Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology. Chem Res Toxicol 27(5):741–753PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Petrescu A-M, Putz MV, Ilia G (2015) Quantitative structure–activity/ecotoxicity relationships (QSAR/QEcoSAR) of a series of phosphonates. Environ Toxicol Pharmacol 40(3):800–824PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Levet A, Bordes C, Clément Y, Mignon P, Morell C, Chermette H, Marote P, Lantéri P (2016) Acute aquatic toxicity of organic solvents modeled by QSARs. J Mol Model 22(12):288PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Basant N, Gupta S, Singh KP (2016) Predicting the acute neurotoxicity of diverse organic solvents using probabilistic neural networks based QSTR modeling approaches. Neurotoxicology 53:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Belanger SE, Brill JL, Rawlings JM, McDonough KM, Zoller AC, Wehmeyer KR (2016) Aquatic toxicity structure-activity relationships for the zwitterionic surfactant alkyl dimethyl amine oxide to several aquatic species and a resulting species sensitivity distribution. Ecotoxicol Environ Saf 134:95–105CrossRefGoogle Scholar
  152. 152.
    Basant N, Gupta S (2017) QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes. Environ Sci Pollut Res 24(16):14430–14444CrossRefGoogle Scholar
  153. 153.
    Basant N, Gupta S (2017) Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Nanotoxicology 11(3):339–350PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    de Morais e Silva L, Lorenzo VP, Lopes WS, Scotti L, Scotti MT (2019) Predictive computational tools for assessment of ecotoxicological activity of organic micropollutants in various water sources in Brazil. Mol Inf.  https://doi.org/10.1002/minf.201800156CrossRefGoogle Scholar
  155. 155.
    Ha H, Park K, Kang G, Lee S (2019) QSAR study using acute toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology 28(3):333–342PubMedCrossRefGoogle Scholar
  156. 156.
    Liu L, Yang H, Cai Y, Cao Q, Sun L, Wang Z, Li W, Liu G, Lee PW, Tang Y (2019) In silico prediction of chemical aquatic toxicity for marine crustaceans via machine learning. Toxicol Res 8:341.  https://doi.org/10.1039/c8tx00331aCrossRefGoogle Scholar
  157. 157.
    Stoyanova-Slavova IB, Slavov SH, Pearce B, Buzatu DA, Beger RD, Wilkes JG (2014) Partial least square and k-nearest neighbor algorithms for improved 3D quantitative spectral data–activity relationship consensus modeling of acute toxicity. Environ Toxicol Chem 33(6):1271–1282CrossRefGoogle Scholar
  158. 158.
    Perales E, García JI, Pires E, Aldea L, Lomba L, Giner B (2017) Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna. Chemosphere 183:277–285PubMedCrossRefGoogle Scholar
  159. 159.
    Su Q, Lu W, Du D, Chen F, Niu B, Chou K-C (2017) Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Oncotarget 8(30):49359PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Tugcu G, Saçan MT (2018) A multipronged QSAR approach to predict algal low-toxic-effect concentrations of substituted phenols and anilines. J Hazard Mater 344:893–901PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Mu Y, Wang Z, Wu F, Zhong B, Yang M, Sun F, Feng C, Jin X, Leung KM, Giesy JP (2018) Model for predicting toxicities of metals and metalloids in coastal marine environments worldwide. Environ Sci Technol 52(7):4199–4206PubMedCrossRefGoogle Scholar
  162. 162.
    de Silva LDM, Alves MF, Scotti L, Lopes WS, Scotti MT (2018) Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches. Ecotoxicol Environ Saf 153:151–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Mabrouk Hamadache
    • 1
  • Othmane Benkortbi
    • 1
  • Abdeltif Amrane
    • 2
    Email author
  • Salah Hanini
    • 1
  1. 1.Laboratoire des Biomatériaux et Phénomènes de Transport (LBMPT)Université Yahia Fares de MédéaMedeaAlgeria
  2. 2.Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000RennesFrance

Personalised recommendations