In Silico Ecotoxicological Modeling of Pesticide Metabolites and Mixtures

  • Chia Ming ChangEmail author
  • Chiung-Wen Chang
  • Fang-Wei Wu
  • Len Chang
  • Tien-Cheng Liu
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Prior to registration, careful assessment of transformation products (TPs) that are more toxic than their parent compounds is required, and EU regulations require greater use of non-animal test methods and risk assessment strategies. Predicting the toxicity of transformation products and chemical mixtures is a major challenge for modern toxicology. Since the metabolic processes of transformation products and toxic effects of chemical mixtures involve complex mechanisms, it is essential to use in silico modeling methods to consider different chemico-biological interactions of metabolic transformation and mixture toxicity. This chapter reviews previous modeling methods used to study pesticide metabolites and mixtures.

Although various metabolites are emitted into the environment, there are few ways to interpret metabolites by predicting their ecotoxicological potential, so their formation and environmental fate are largely unknown. In vitro testing has limited coverage of metabolic processes present throughout the organism and may not always predict in vivo results. For systematically assessing the metabolic activation of persistent organic pollutants, researchers designed a comprehensive metabolic simulator to generate the metabolic profile of the POPs. In order to analyze and evaluate parent compounds and transformation products in the environment, data generation based on quantitative structure-activity relationship (QSAR) is becoming more and more important. Besides these, a process-based multimedia multi-species model allows us to quantitatively estimate the environmental exposure and fate of parent compounds and transformation products.

Pollutants in the environment usually appear in a joint form, and the biological effects of the mixture are different from the single separated components, so the risk assessment criteria for a single compound cannot accurately infer the actual complex environmental assessment. The interaction between the components of the mixture promotes significant changes in compositional characteristics and complications leading to synergistic or antagonistic effects. The covalent bonding, ionic bonding, van der Waals force, and hydrophilicity are important intermolecular forces that affect the interaction of chemical mixtures and are associated with four types of descriptors. This relationship has been able to study the reaction mechanisms of various environmental characteristics of organic pollutants.

Key words

Pesticide Transformation product Chemical mixture Ecotoxicity Environmental fate In silico modeling 


  1. 1.
    Sinclair CJ, Boxall ABA (2003) Assessing the ecotoxicity of pesticide transformation products. Environ Sci Technol 37(20):4617–4625PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Burden N, Maynard SK, Weltje L, Wheeler JR (2016) The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: a retrospective validation approach. Regul Toxicol Pharmacol 80:241–246PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    EC (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off J Eur Union 50:1–50Google Scholar
  4. 4.
    Sinclair CJ, Boxall ABA (2009) Ecotoxicity of transformation products. In: Boxall ABA (ed) Transformation products of synthetic chemicals in the environment. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 177–204CrossRefGoogle Scholar
  5. 5.
    Ng CA, Scheringer M, Fenner K, Hungerbuhler K (2011) A framework for evaluating the contribution of transformation products to chemical persistence in the environment. Environ Sci Technol 45(1):111–117PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Galassi S, Provini A, Halfon E (1996) Risk assessment for pesticides and their metabolites in water. Int J Environ Anal Chem 65(1–4):331–344CrossRefGoogle Scholar
  7. 7.
    Roncaglioni A, Benfenati E, Boriani E, Clook M (2004) A protocol to select high quality datasets of ecotoxicity values for pesticides. J Environ Sci Health B 39(4):641–652PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    van Zelm R, Huijbregts MAJ, van de Meent D (2010) Transformation products in the life cycle impact assessment of chemicals. Environ Sci Technol 44(3):1004–1009PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Escher BI, Bramaz N, Richter M, Lienert J (2006) Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach. Environ Sci Technol 40(23):7402–7408PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Verhaar HJM, van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. Chemosphere 25(4):471–491CrossRefGoogle Scholar
  11. 11.
    Escher BI, Fenner K (2011) Recent advances in environmental risk assessment of transformation products. Environ Sci Technol 45(9):3835–3847PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Fenner K, Scheringer M, Hungerbühler K (2000) Persistence of parent compounds and transformation products in a level IV multimedia model. Environ Sci Technol 34(17):3809–3817CrossRefGoogle Scholar
  13. 13.
    Ferrari B, Mons R, Vollat B, Fraysse B, Paxēaus N, Giudice RL, Pollio A, Garric J (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23(5):1344–1354PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Huschek G, Hansen PD, Maurer HH, Krengel D, Kayser A (2004) Environmental risk assessment of medicinal products for human use according to European Commission recommendations. Environ Toxicol 19(3):226–240PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Baselt RC (2000) Disposition of toxic drugs and chemicals in man: Chemical Toxicology Institute.Google Scholar
  16. 16.
    EFSA P. Panel (European Food Safety Authority Panel on Plant Protection Products and their Residues) (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J 11(7):3290Google Scholar
  17. 17.
    Reuschenbach P, Silvani M, Dammann M, Warnecke D, Knacker T (2008) ECOSAR model performance with a large test set of industrial chemicals. Chemosphere 71(10):1986–1995PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ Sci Technol 43(18):7039–7046PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ellis LBM, Gao J, Fenner K, Wackett LP (2008) The University of Minnesota pathway prediction system: predicting metabolic logic. Nucleic Acids Res 36(Suppl 2):W427–W432PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ellis LBM, Roe D, Wackett LP (2006) The University of Minnesota Biocatalysis/Biodegradation Database: the first decade. Nucleic Acids Res 34(Suppl 1):D517–D521PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Klopman G, Tu M (1997) Structure–biodegradability study and computer-automated prediction of aerobic biodegradation of chemicals. Environ Toxicol Chem 16(9):1829–1835Google Scholar
  22. 22.
    Mekenyan O, Dimitrov S, Dimitrova N, Dimitrova G, Pavlov T, Chankov G, Kotov S, Vasilev K, Vasilev R (2006) Metabolic activation of chemicals: in-silico simulation. SAR QSAR Environ Res 17(1):107–120PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Saiakhov R, Chakravarti S, Klopman G (2013) Effectiveness of CASE ultra expert system in evaluating adverse effects of drugs. Mol Inf 32(1):87–97CrossRefGoogle Scholar
  24. 24.
    Roberts G, Myatt GJ, Johnson WP, Cross KP, Blower PE (2000) LeadScope: software for exploring large sets of screening data. J Chem Inf Comput Sci 40(6):1302–1314PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gutowski L, Olsson O, Leder C, Kümmerer K (2015) A comparative assessment of the transformation products of S-metolachlor and its commercial product Mercantor Gold® and their fate in the aquatic environment by employing a combination of experimental and in silico methods. Sci Total Environ 506–507:369–379PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Villaverde JJ, Sevilla-Morán B, López-Goti C, Calvo L, Alonso-Prados JL, Sandín-España P (2018) Photolysis of clethodim herbicide and a formulation in aquatic environments: fate and ecotoxicity assessment of photoproducts by QSAR models. Sci Total Environ 615:643–651PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Transformation products of pesticides in the environment: analysis and occurrence. In: Transformation products of emerging contaminants in the environment.Google Scholar
  28. 28.
    Martins PF, Martinez CO, Gd C, Carneiro PIB, Azevedo RA, Pileggi SAV, Melo IS, Pileggi M (2007) Selection of microorganisms degrading S-Metolachlor herbicide. Braz Arch Biol Technol 50:153–159CrossRefGoogle Scholar
  29. 29.
    Olsson O, Khodorkovsky M, Gassmann M, Friedler E, Schneider M, Dubowski Y (2013) Fate of pesticides and their transformation products: first flush effects in a semi-arid catchment. Clean (Weinh) 41(2):134–142Google Scholar
  30. 30.
    Schmidt CK, Brauch H-J (2008) N,N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ Sci Technol 42(17):6340–6346PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Mahmoud WMM, Toolaram AP, Menz J, Leder C, Schneider M, Kümmerer K (2014) Identification of phototransformation products of thalidomide and mixture toxicity assessment: an experimental and quantitative structural activity relationships (QSAR) approach. Water Res 49:11–22PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rastogi T, Leder C, Kümmerer K (2014) Qualitative environmental risk assessment of photolytic transformation products of iodinated X-ray contrast agent diatrizoic acid. Sci Total Environ 482–483:378–388PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Rastogi T, Leder C, Kümmerer K (2014) Designing green derivatives of β-blocker Metoprolol: a tiered approach for green and sustainable pharmacy and chemistry. Chemosphere 111:493–499PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gasser L, Fenner K, Scheringer M (2007) Indicators for the exposure assessment of transformation products of organic micropollutants. Environ Sci Technol 41(7):2445–2451PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kern S, Singer H, Hollender J, Schwarzenbach RP, Fenner K (2011) Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data. Environ Sci Technol 45(7):2833–2841PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Fenner K, Schenker U, Scheringer M (2008) Modelling environmental exposure to transformation products of organic chemicals. In: Boxall ABA (eds) Transformation products of synthetic chemicals in the environment. The handbook of environmental chemistry, vol 2P. Springer, Berlin, HeidelbergGoogle Scholar
  37. 37.
    Latino DARS, Wicker J, Gütlein M, Schmid E, Kramer S, Fenner K (2017) Eawag-Soil in enviPath: a new resource for exploring regulatory pesticide soil biodegradation pathways and half-life data. Environ Sci: Processes Impacts 19(3):449–464Google Scholar
  38. 38.
    Hernández-Moreno D, Blázquez M, Andreu-Sánchez O, Bermejo-Nogales A, Fernández-Cruz ML (2019) Acute hazard of biocides for the aquatic environmental compartment from a life-cycle perspective. Sci Total Environ 658:416–423PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lienert J, Güdel K, Escher BI (2007) Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol 41(12):4471–4478PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Cwiertny DM, Snyder SA, Schlenk D, Kolodziej EP (2014) Environmental designer drugs: when transformation may not eliminate risk. Environ Sci Technol 48(20):11737–11745PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Boxall ABA, Sinclair CJ, Fenner K, Kolpin D, Maund SJ (2004) Peer reviewed: when synthetic chemicals degrade in the environment. Environ Sci Technol 38(19):368A–375APubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehisa M (2010) PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38(suppl_2):W138–W143PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dimitrov S, Pavlov T, Dimitrova N, Georgieva D, Nedelcheva D, Kesova A, Vasilev R, Mekenyan O (2011) Simulation of chemical metabolism for fate and hazard assessment. II CATALOGIC simulation of abiotic and microbial degradation. SAR QSAR Environ Res 22(7–8):719–755PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Computational framework for predictive biodegradation. Biotechnol Bioeng 104(6):1086–1097PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ellis LBM, Gao J, Fenner K, Wackett LP (2008) The University of Minnesota pathway prediction system: predicting metabolic logic. Nucleic Acids Res 36(Web Server issue):W427–W432PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gao J, Ellis LBM, Wackett LP (2010) The University of Minnesota Biocatalysis/Biodegradation Database: improving public access. Nucleic Acids Res 38(Database issue):D488–D491PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bending GD, Lincoln SD, Edmondson RN (2006) Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ Pollut 139(2):279–287PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Helbling DE, Johnson DR, Honti M, Fenner K (2012) Micropollutant biotransformation kinetics associate with WWTP process parameters and microbial community characteristics. Environ Sci Technol 46(19):10579–10588PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Mekenyan OG, Dimitrov SD, Pavlov TS, Veith GD (2005) POPs: a QSAR system for developing categories for persistent, bioacculative and toxic chemicals and their metabolites. SAR QSAR Environ Res 16(1–2):103–133PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Escher BI, Baumgartner R, Lienert J, Fenner K (2009) Predicting the ecotoxicological effects of transformation products. In: Boxall ABA (ed) Transformation products of synthetic chemicals in the environment. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 205–244Google Scholar
  51. 51.
    Rudik AV, Bezhentsev VM, Dmitriev AV, Druzhilovskiy DS, Lagunin AA, Filimonov DA, Poroikov VV (2017) MetaTox: web application for predicting structure and toxicity of xenobiotics’ metabolites. J Chem Inf Model 57(4):638–642PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Filimonov D, Poroikov V, Borodina Y, Gloriozova T (1999) Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J Chem Inf Comput Sci 39(4):666–670CrossRefGoogle Scholar
  53. 53.
    Filimonov DA, Zakharov AV, Lagunin AA, Poroikov VV (2009) QNA-based ‘star track’ QSAR approach. SAR QSAR Environ Res 20(7–8):679–709PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zakharov AV, Varlamova EV, Lagunin AA, Dmitriev AV, Muratov EN, Fourches D, Kuz’min VE, Poroikov VV, Tropsha A, Nicklaus MC (2016) QSAR modeling and prediction of drug–drug interactions. Mol Pharm 13(2):545–556PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kolanczyk RC, Schmieder P, Jones WJ, Mekenyan OG, Chapkanov A, Temelkov S, Kotov S, Velikova M, Kamenska V, Vasilev K, Veith GD (2012) MetaPath: an electronic knowledge base for collating, exchanging and analyzing case studies of xenobiotic metabolism. Regul Toxicol Pharmacol 63(1):84–96PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kolanczyk RC, Serrano JA, Tapper MA, Schmieder PK (2018) A comparison of fish pesticide metabolic pathways with those of the rat and goat. Regul Toxicol Pharmacol 94:124–143PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kirchmair J, Williamson MJ, Tyzack JD, Tan L, Bond PJ, Bender A, Glen RC (2012) Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model 52(3):617–648PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Madden JC, Webb S, Enoch SJ, Colley HE, Murdoch C, Shipley R, Sharma P, Yang C, Cronin MTD (2017) In silico prediction of skin metabolism and its implication in toxicity assessment. Computat Toxicol 3:44–57CrossRefGoogle Scholar
  59. 59.
    Agatonovic-Kustrin S, Morton DW, Celebic D (2013) QSAR: an in silico approach for predicting the partitioning of pesticides into breast milk. Comb Chem High Throughput Screen 16(3):223–232PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Xiao H, Kuckelkorn J, Nüßer LK, Floehr T, Hennig MP, Roß-Nickoll M, Schäffer A, Hollert H (2016) The metabolite 3,4,3′,4′-tetrachloroazobenzene (TCAB) exerts a higher ecotoxicity than the parent compounds 3,4-dichloroaniline (3,4-DCA) and propanil. Sci Total Environ 551–552:304–316PubMedCrossRefGoogle Scholar
  61. 61.
    Vedani A, Smiesko M, Spreafico M, Peristera O, Dobler M (2009) VirtualToxLab - in silico prediction of the toxic (endocrine-disrupting) potential of drugs, chemicals and natural products. Two years and 2,000 compounds of experience: a progress report. ALTEX 26(3):167–176PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Vedani A, Dobler M, Smieško M (2012) VirtualToxLab — a platform for estimating the toxic potential of drugs, chemicals and natural products. Toxicol Appl Pharmacol 261(2):142–153PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Vedani A, Dobler M, Hu Z, Smieško M (2015) OpenVirtualToxLab—A platform for generating and exchanging in silico toxicity data. Toxicol Lett 232(2):519–532PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Judson RS, Magpantay FM, Chickarmane V, Haskell C, Tania N, Taylor J, Xia M, Huang R, Rotroff DM, Filer DL, Houck KA, Martin MT, Sipes N, Richard AM, Mansouri K, Setzer RW, Knudsen TB, Crofton KM, Thomas RS (2015) Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor. Toxicol Sci 148(1):137–154PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS (2016) CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect 124(7):1023–1033PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pinto CL, Mansouri K, Judson R, Browne P (2016) Prediction of estrogenic bioactivity of environmental chemical metabolites. Chem Res Toxicol 29(9):1410–1427PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dekant W, Melching-Kollmuß S, Kalberlah F (2010) Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products. Regul Toxicol Pharmacol 56(2):135–142PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Pavan M, Worth AP (2008) Publicly-accessible QSAR software tools developed by the Joint Research Centre. SAR QSAR Environ Res 19(7–8):785–799PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Clark RD (2018) Predicting mammalian metabolism and toxicity of pesticides in silico. Pest Manag Sci 74(9):1992–2003PubMedCentralCrossRefGoogle Scholar
  70. 70.
    Safe SH (1998) Hazard and risk assessment of chemical mixtures using the toxic equivalency factor approach. Environ Health Perspect 106(Suppl 4):1051–1058PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mekenyan OG, Kamenska V, Schmieder PK, Ankley GT, Bradbury SP (2000) A computationally based identification algorithm for estrogen receptor ligands: part 2. Evaluation of a hERα binding affinity model. Toxicol Sci 58(2):270–281PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chen Y, Cheng F, Sun L, Li W, Liu G, Tang Y (2014) Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors. Ecotoxicol Environ Saf 110:280–287PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kirchmair J, Goller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G (2015) Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov 14(6):387–404PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Wang P, Dang L, Zhu B-T (2016) Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors. Steroids 105:26–41PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Tanji KK, Sullivan JJ (1995) Qsar analysis of the chemical hydrolysis of organophosphorus pesticides in natural waters. Technical Completion Report Project Number W-843, University of California Water Resource CenterGoogle Scholar
  76. 76.
    Ortiz-Hernández ML, Quintero-Ramírez R, Nava-Ocampo AA, Bello-Ramírez AM (2003) Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fundam Clin Pharmacol 17(6):717–723PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lee Y, von Gunten U (2012) Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res 46(19):6177–6195PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91(2):165–195CrossRefGoogle Scholar
  79. 79.
    Bello-Ramı́rez AM, Carreón-Garabito BY, Nava-Ocampo AA (2000) A theoretical approach to the mechanism of biological oxidation of organophosphorus pesticides. Toxicology 149(2):63–68PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Lo Piparo E, Fratev F, Lemke F, Mazzatorta P, Smiesko M, Fritz JI, Benfenati E (2006) QSAR models for Daphnia magna toxicity prediction of benzoxazinone allelochemicals and their transformation products. J Agric Food Chem 54(4):1111–1115PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967CrossRefGoogle Scholar
  82. 82.
    Nielsen MK, Holtze MS, Svensmark B, Juhler RK (2007) Demonstrating formation of potentially persistent transformation products from the herbicides bromoxynil and ioxynil using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pest Manag Sci 63(2):141–149PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Jeannot R, Sabik H, Sauvard E, Genin E (2000) Application of liquid chromatography with mass spectrometry combined with photodiode array detection and tandem mass spectrometry for monitoring pesticides in surface waters. J Chromatogr A 879(1):51–71PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bossi R, Vejrup KV, Mogensen BB, Asman WAH (2002) Analysis of polar pesticides in rainwater in Denmark by liquid chromatography–tandem mass spectrometry. J Chromatogr A 957(1):27–36PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Villaverde JJ, López-Goti C, Alcamí M, Lamsabhi AM, Alonso-Prados JL, Sandín-España P (2017) Quantum chemistry in environmental pesticide risk assessment. Pest Manag Sci 73(11):2199–2202PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Duirk SE, Desetto LM, Davis GM (2009) Transformation of organophosphorus pesticides in the presence of aqueous chlorine: kinetics, pathways, and structure−activity relationships. Environ Sci Technol 43(7):2335–2340PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hu J-y, Morita T, Magara Y, Aizawa T (2000) Evaluation of reactivity of pesticides with ozone in water using the energies of frontier molecular orbitals. Water Res 34(8):2215–2222CrossRefGoogle Scholar
  88. 88.
    Matsushita T, Morimoto A, Kuriyama T, Matsumoto E, Matsui Y, Shirasaki N, Kondo T, Takanashi H, Kameya T (2018) Removals of pesticides and pesticide transformation products during drinking water treatment processes and their impact on mutagen formation potential after chlorination. Water Res 138:67–76PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Villaverde JJ, Sandín-España P, Alonso-Prados JL, Lamsabhi AM, Alcamí M (2018) Computational study of the structure and degradation products of alloxydim herbicide. J Phys Chem A 122(15):3909–3918PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sinclair CJ, Boxall ABA, Parsons SA, Thomas MR (2006) Prioritization of pesticide environmental transformation products in drinking water supplies. Environ Sci Technol 40(23):7283–7289PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2016) Trends in analysis of pesticide residues to fulfil the European Regulation (EC) No. 1107/2009. TrAC Trends Anal Chem 80:568–580CrossRefGoogle Scholar
  92. 92.
    Sandín-España P, Sevilla-Morán B, Calvo L, Mateo-Miranda M, Alonso-Prados JL (2013) Photochemical behavior of alloxydim herbicide in environmental waters. Structural elucidation and toxicity of degradation products. Microchem J 106:212–219CrossRefGoogle Scholar
  93. 93.
    Duirk SE, Collette TW (2006) Degradation of chlorpyrifos in aqueous chlorine solutions: pathways, kinetics, and modeling. Environ Sci Technol 40(2):546–551PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Neuwoehner J, Zilberman T, Fenner K, Escher BI (2010) QSAR-analysis and mixture toxicity as diagnostic tools: influence of degradation on the toxicity and mode of action of diuron in algae and daphnids. Aquat Toxicol 97(1):58–67PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Verhaar HJM, Busser FJM, Hermens JLM (1995) Surrogate parameter for the baseline toxicity content of contaminated water: simulating the bioconcentration of mixtures of pollutants and counting molecules. Environ Sci Technol 29(3):726–734PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Altenburger R, Nendza M, Schüürmann G (2003) Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem 22(8):1900–1915PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Zhang Y-H, Liu S-S, Song X-Q, Ge H-L (2008) Prediction for the mixture toxicity of six organophosphorus pesticides to the luminescent bacterium Q67. Ecotoxicol Environ Saf 71(3):880–888PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Di Nica V, Gallet J, Villa S, Mezzanotte V (2017) Toxicity of Quaternary Ammonium Compounds (QACs) as single compounds and mixtures to aquatic non-target microorganisms: experimental data and predictive models. Ecotoxicol Environ Saf 142:567–577PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Neale PA, Leusch FDL, Escher BI (2017) Applying mixture toxicity modelling to predict bacterial bioluminescence inhibition by non-specifically acting pharmaceuticals and specifically acting antibiotics. Chemosphere 173:387–394PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2003) Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag Sci 59(10):1101–1110PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Deneer JW (2000) Toxicity of mixtures of pesticides in aquatic systems. Pest Manag Sci 56(6):516–520CrossRefGoogle Scholar
  102. 102.
    Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56(1):13–32PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat Toxicol 63(1):43–63PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Backhaus T, Faust M, Scholze M, Gramatica P, Vighi M, Grimme LH (2004) Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action. Environ Toxicol Chem 23(2):258–264PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2006) Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures. Aquat Toxicol 76(2):93–110PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Pape-Lindstrom PA, Lydy MJ (1997) Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ Toxicol Chem 16(11):2415–2420CrossRefGoogle Scholar
  107. 107.
    Spurgeon DJ, Jones OAH, Dorne J-LCM, Svendsen C, Swain S, Stürzenbaum SR (2010) Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Sci Total Environ 408(18):3725–3734PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Phyu YL, Palmer CG, Warne MSJ, Hose GC, Chapman JC, Lim RP (2011) A comparison of mixture toxicity assessment: examining the chronic toxicity of atrazine, permethrin and chlorothalonil in mixtures to Ceriodaphnia cf. dubia. Chemosphere 85(10):1568–1573PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Altenburger R, Boedeker W, Faust M, Grimme LH (1996) Regulations for combined effects of pollutants: consequences from risk assessment in aquatic toxicology. Food Chem Toxicol 34(11):1155–1157PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Warne MSJ, Hawker DW (1995) The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: the funnel hypothesis. Ecotoxicol Environ Saf 31(1):23–28PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Wang L-J, Liu S-S, Zhang J, Li W-Y (2010) A new effect residual ratio (ERR) method for the validation of the concentration addition and independent action models. Environ Sci Pollut Res 17(5):1080–1089CrossRefGoogle Scholar
  112. 112.
    Tang JYM, McCarty S, Glenn E, Neale PA, Warne MSJ, Escher BI (2013) Mixture effects of organic micropollutants present in water: towards the development of effect-based water quality trigger values for baseline toxicity. Water Res 47(10):3300–3314PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lydy M, Belden J, Wheelock C, Hammock B, Denton D (2004) Challenges in regulating pesticide mixtures. Ecol Soc 9(6):1CrossRefGoogle Scholar
  114. 114.
    Laetz CA, Baldwin DH, Collier TK, Hebert V, Stark JD, Scholz NL (2009) The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environ Health Perspect 117(3):348–353PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    LeBlanc GA, Wang G (2006) Chemical mixtures: greater-than-additive effects? Environ Health Perspect 114(9):A517–A519PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Feron VJ, Cassee FR, Groten JP (1998) Toxicology of chemical mixtures: international perspective. Environ Health Perspect 106(suppl 6):1281–1289PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Chèvre N, Loepfe C, Singer H, Stamm C, Fenner K, Escher BI (2006) Including mixtures in the determination of water quality criteria for herbicides in surface water. Environ Sci Technol 40(2):426–435PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Desalegn A, Bopp S, Asturiol D, Lamon L, Worth A, Paini A (2019) Role of Physiologically Based Kinetic modelling in addressing environmental chemical mixtures – a review. Comput Toxicol 10:158–168PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Boberg J, Dybdahl M, Petersen A, Hass U, Svingen T, Vinggaard AM (2019) A pragmatic approach for human risk assessment of chemical mixtures. Curr Opin Toxicol 15:1–7CrossRefGoogle Scholar
  120. 120.
    Escher BI, Baumer A, Bittermann K, Henneberger L, König M, Kühnert C, Klüver N (2017) General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri. Environ Sci: Processes Impacts 19(3):414–428Google Scholar
  121. 121.
    Vaes WHJ, Ramos EU, Verhaar HJM, Hermens JLM (1998) Acute toxicity of nonpolar versus polar narcosis: is there a difference? Environ Toxicol Chem 17(7):1380–1384CrossRefGoogle Scholar
  122. 122.
    Ghafourian T, Samaras EG, Brooks JD, Riviere JE (2010) Modelling the effect of mixture components on permeation through skin. Int J Pharm 398(1):28–32PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Toropova AP, Toropov AA, Benfenati E, Gini G, Leszczynska D, Leszczynski J (2012) CORAL: models of toxicity of binary mixtures. Chemom Intell Lab Syst 119:39–43CrossRefGoogle Scholar
  124. 124.
    Lin Z, Yu H, Wei D, Wang G, Feng J, Wang L (2002) Prediction of mixture toxicity with its total hydrophobicity. Chemosphere 46(2):305–310PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Lin Z, Zhong P, Yin K, Wang L, Yu H (2003) Quantification of joint effect for hydrogen bond and development of QSARs for predicting mixture toxicity. Chemosphere 52(7):1199–1208PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Lin Z, Shi P, Gao S, Wang L, Yu H (2003) Use of partition coefficients to predict mixture toxicity. Water Res 37(9):2223–2227PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Zhang L, Zhou P-j, Yang F, Wang Z-d (2007) Computer-based QSARs for predicting mixture toxicity of benzene and its derivatives. Chemosphere 67(2):396–401PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Chen F, Liu S-S, Duan X-T, Xiao Q-F (2014) Predicting the mixture effects of three pesticides by integrating molecular simulation with concentration addition modeling. RSC Adv 4(61):32256–32262CrossRefGoogle Scholar
  129. 129.
    Kim J, Fischer M, Helms V (2018) Prediction of synergistic toxicity of binary mixtures to vibrio fischeri based on biomolecular interaction networks. Chem Res Toxicol 31(11):1138–1150PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Qin L-T, Chen Y-H, Zhang X, Mo L-Y, Zeng H-H, Liang Y-P (2018) QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere 198:122–129PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Qin L-T, Liu S-S, Chen F, Wu Q-S (2013) Development of validated quantitative structure–retention relationship models for retention indices of plant essential oils. J Sep Sci 36(9–10):1553–1560PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Qin L-T, Liu S-S, Chen F, Xiao Q-F, Wu Q-S (2013) Chemometric model for predicting retention indices of constituents of essential oils. Chemosphere 90(2):300–305PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34(24):2121–2132CrossRefGoogle Scholar
  134. 134.
    Gramatica P, Cassani S, Chirico N (2014) QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem 35(13):1036–1044PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22(1):69–77CrossRefGoogle Scholar
  136. 136.
    Sobati MA, Abooali D, Maghbooli B, Najafi H (2016) A new structure-based model for estimation of true critical volume of multi-component mixtures. Chemom Intell Lab Syst 155:109–119CrossRefGoogle Scholar
  137. 137.
    Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20:770–787CrossRefGoogle Scholar
  138. 138.
    Wehrens R, van der Linden WE (1997) Bootstrapping principal component regression models. J Chemom 11(2):157–171CrossRefGoogle Scholar
  139. 139.
    Rücker C, Rücker G, Meringer M (2007) Y-randomization and its variants in QSPR/QSAR. J Chem Inf Model 47(6):2345–2357PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Gaudin T, Rotureau P, Fayet G (2015) Mixture descriptors toward the development of quantitative structure–property relationship models for the flash points of organic mixtures. Ind Eng Chem Res 54(25):6596–6604CrossRefGoogle Scholar
  141. 141.
    Chang CM (2008) DFT-based linear solvation energy relationships for the infrared spectral shifts of acetone in polar and nonpolar organic solvents. J Phys Chem A 112(11):2482–2488PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Chang CM, Lin TH, Chen YS, Chang CW, Huang KL, Wu FW, Hsu WJ, Yu MP, Lin C, Wang MK (2014) A quantum chemical approach using classical concepts to characterization and descriptive analysis of various reactions of metal ions and organic compounds. Chemom Intell Lab Syst 136:155–163CrossRefGoogle Scholar
  143. 143.
    Chang CM, Ou YH, Liu TC, Lu SY, Wang MK (2016) A quantitative structure-activity relationship approach for assessing toxicity of mixture of organic compounds. SAR QSAR Environ Res 27(6):441–453PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Ou YH, Chang CM, Chen YS (2016) A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents. Spectrochim Acta A Mol Biomol Spectrosc 162:109–114PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Yu Heng O, Len C, Chia MC (2018) A quantitative structure-property relationship study of the adsorption of amino acids on kaolinite surfaces. Int J IJQSPR 3(2):21–35Google Scholar
  146. 146.
    Len C, Chia MC (2019) A QSAR study on the persistence of fungicides in the environment. Int J IJQSPR 4(2):100–116Google Scholar
  147. 147.
    Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89(8):1827–1836CrossRefGoogle Scholar
  148. 148.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516CrossRefGoogle Scholar
  149. 149.
    Torrent-Sucarrat M, De Proft F, Ayers PW, Geerlings P (2010) On the applicability of local softness and hardness. Phys Chem Chem Phys 12(5):1072–1080PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Lu G, Wang C, Tang Z, Guo X (2007) Joint toxicity of aromatic compounds to algae and QSAR study. Ecotoxicology 16(7):485–490PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Chia Ming Chang
    • 1
    Email author
  • Chiung-Wen Chang
    • 2
  • Fang-Wei Wu
    • 1
  • Len Chang
    • 1
  • Tien-Cheng Liu
    • 3
  1. 1.Environmental Molecular and Electromagnetic Physics (EMEP) Laboratory, Department of Soil and Environmental SciencesNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Food and Drug Administration, Ministry of Health and WelfareTaipeiTaiwan
  3. 3.Bureau of Animal and Plant Health Inspection and Quarantine (BAPHIQ), Council of Agriculture, Executive YuanTaipeiTaiwan

Personalised recommendations