Advertisement

QSARs and Read-Across for Thiochemicals: A Case Study of Using Alternative Information for REACH Registrations

  • Monika NendzaEmail author
  • Jan Ahlers
  • Dirk Schwartz
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

A case study on acute aquatic toxicity of thiochemicals shows the possibilities and limitations of filling data gaps with alternative information in accordance with the requirements of REACH. It is the objective of this study to extract as much information as possible from available experimental studies with fish, daphnia, and algae to estimate required data by QSARs and read-across.

Thiochemicals are considered to be toxic with an unspecific reactive mode of action (MoA) causing so-called excess toxicity, i.e., the effects are much higher than estimated from log KOW-dependent baseline QSARs. Differences in toxicity between groups of thiochemicals, for example, thioglycolates or mercaptopropionates, are thought to be due to differences in reactivity of the respective sulfur moiety, i.e., toxicodynamic differences. Thiochemicals within each group are different with regard to partitioning between biophases related to, e.g., increasing aliphatic chain length, i.e., toxicokinetic differences.

Due to the toxicodynamic and toxicokinetic differences, QSARs and read-across are limited to thiochemicals within the same group. Since the database per group of thiochemicals is too small to derive scientifically valid QSARs, most of the 36 data gaps for 16 thiochemicals to be registered by 2018 were closed by read-across. Testing strategies to fill remaining data gaps include tests with algae (six substances) and daphnia (six substances). Only for two substances, experimental (limit) fish studies are recommended. Overall, a substantial (>60%) reduction of tests by predictive in silico methods is possible.

Key words

REACH QSARs Read-across Category approaches Acute aquatic toxicity Unspecific reactive mode of action (MoA) Excess toxicity Integrated testing strategies (ITS) 3Rs 

References

  1. 1.
    European Commission (2006) REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. European Commission, BrusselsGoogle Scholar
  2. 2.
    ECHA (2016) Practical guide How to use alternatives to animal testing to fulfil your information requirements for REACH registration. ECHA, HelsinkiGoogle Scholar
  3. 3.
    ECHA (2017) Read-across assessment framework (RAAF). ECHA, HelsinkiGoogle Scholar
  4. 4.
    European Commission (2009) Regulation (EC) 1272/2008 on classification, labelling and packaging of substances and mixtures (CLP) from January 20, 2009. European Commission, BrusselsGoogle Scholar
  5. 5.
    Ahlers J, Stock F, Werschkun B (2008) Integrated testing and intelligent assessment – new challenges under REACH. Environ Sci Pollut Res Int 15:565–572CrossRefGoogle Scholar
  6. 6.
    EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Benfenati E, Chaudhry QM, Craig P, Frampton G, Greiner M, Hart A, Hogstrand C, Lambre C, Luttik R, Makowski D, Siani A, Wahlstroem H, Aguilera J, Dorne JL, Dumont AF, Hempen M, Martínez SV, Martino L, Smeraldi C, Terron A, Georgiadis N, Younes M (2017) Guidance on the use of the weight of evidence approach in scientific assessments. EFSA J 15(8):e04971.  https://doi.org/10.2903/j.efsa.2017.4971CrossRefGoogle Scholar
  7. 7.
    Rovida C, Alépée N, Api AM, Basketter DA, Bois FY, Caloni F, Corsini E, Daneshian M, Eskes C, Ezendam J, Fuchs H, Hayden P, Hegele-Hartung C, Hoffmann S, Hubesch B, Jacobs MN, Jaworska J, Kleensang A, Kleinstreuer N, Lalko J, Landsiedel R, Lebreux F, Luechtefeld T, Locatelli M, Mehling A, Natsch A, Pitchford JW, Prater D, Prieto P, Schepky A, Schüürmann G, Smirnova L, Toole C, van Vliet E, Weisensee D, Hartung T (2015) Integrated Testing Strategies (ITS) for safety assessment. ALTEX 32(1):25–40CrossRefGoogle Scholar
  8. 8.
    Gabbert S, Benighaus C (2012) Quo vadis integrated testing strategies? Experiences and observations from the work floor. J Risk Res 15(6):583–599.  https://doi.org/10.1080/13669877.2011.646291CrossRefGoogle Scholar
  9. 9.
    Jaworska JS, Gabbert S, Aldenberg T (2010) Towards optimization of chemical testing under REACH: a Bayesian network approach to Integrated Testing Strategies. Regul Toxicol Pharmacol 57:157–167CrossRefGoogle Scholar
  10. 10.
    Lombardo A, Roncaglioni A, Benfenati E, Nendza M, Segner H, Jeram S, Paunée E, Schüürmann G (2014) Optimizing the aquatic toxicity assessment under REACH through an integrated testing strategy (ITS). Environ Res 135:156–164CrossRefGoogle Scholar
  11. 11.
    ECHA (2017) Guidance on information requirements and chemical safety assessment Chapter R.7b: Endpoint specific guidance. ECHA, HelsinkiGoogle Scholar
  12. 12.
    Young D, Martin T, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct? QSAR Combi Sci 27:1337–1345CrossRefGoogle Scholar
  13. 13.
    Ahlers J, Nendza M, Schwartz D (2019) Environmental hazard and risk assessment of thiochemicals. Application of integrated testing and intelligent assessment strategies (ITS) to fulfil the REACH requirements for aquatic toxicity. Chemosphere 214:480–490.  https://doi.org/10.1016/j.chemosphere.2018.09.082CrossRefPubMedGoogle Scholar
  14. 14.
    Rücker C, Mahmoud WMM, Schwartz D, Kümmerer K (2018) Biodegradation tests of mercaptocarboxylic acids, their esters, related divalent sulfur compounds and mercaptans. Environ Sci Pollut Res 25:18393–18411.  https://doi.org/10.1007/s11356-018-1812-xCrossRefGoogle Scholar
  15. 15.
    Klimisch HJ, Andreae E, Tillmann U (1997) A systematic approach for evaluating the quality of experimental and ecotoxicological data. Regul Toxicol Pharmacol 25:1–5CrossRefGoogle Scholar
  16. 16.
    Nendza M, Müller M, Wenzel A (2014) Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicity. SAR QSAR Environ Res 25(5):393–405.  https://doi.org/10.1080/1062936X.2014.907205CrossRefPubMedGoogle Scholar
  17. 17.
    Nendza M, Wenzel A (2006) Discriminating toxicant classes by mode of action: 1. (Eco)toxicity profiles. Environ Sci Pollut Res Int 13:192–203CrossRefGoogle Scholar
  18. 18.
    Nendza M, Müller M (2000) Discriminating toxicant classes by mode of action: 2. Physico-chemical descriptors. Quant Struct-Act Relat 19:581–598CrossRefGoogle Scholar
  19. 19.
    Nendza M, Müller M, Wenzel A (2017) Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies. Environ Sci: Processes Impacts 19(3):429–437.  https://doi.org/10.1039/C6EM00600KCrossRefGoogle Scholar
  20. 20.
    Shigeoka T, Sato Y, Takeda Y, Yoshida K, Yamauchi F (1988) Acute toxicity of chlorophenols to green algae, Selenastrum capricornutum and Chlorella vulgaris, and quantitative structure-activity relationships. Environ Toxicol Chem 7:847–854CrossRefGoogle Scholar
  21. 21.
    Hermens JLM, Canton H, Janssen P, de Jong R (1984) Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anaesthetic potency: acute lethal and sublethal toxicity to Daphnia magna. Aquat Toxicol 5:143–154CrossRefGoogle Scholar
  22. 22.
    Deneer JW, van Leeuwen CJ, Maas-Diepeveen JL, Hermes JLM (1989) QSAR study of the toxicity of nitrobenzene derivatives towards Daphnia magna, Chlorella pyrenoidosa and Photobacterium phosphoreum. Aquat Toxicol 15:83–98CrossRefGoogle Scholar
  23. 23.
    Könemann H (1981) Quantitative structure-activity relationships in fish toxicity studies. Part I: relationship for 50 industrial pollutants. Toxicology 19:209–221CrossRefGoogle Scholar
  24. 24.
    Nendza M, Russom CL (1991) QSAR modeling of the ERL-D fathead minnow acute toxicity database. Xenobiotica 21:147–170CrossRefGoogle Scholar
  25. 25.
    Royal Society of Chemistry (2018) ChemSpider. http://www.chemspider.com
  26. 26.
    US EPA (2012) KOWWIN v1.68 from EPISuite, Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, D.C. https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
  27. 27.
  28. 28.
  29. 29.
    Nendza M, Gabbert S, Kühne R, Lombardo A, Roncaglioni A, Benfenati E, Benigni R, Bossa C, Strempel S, Scheringer M, Fernández A, Rallo R, Giralt F, Dimitrov S, Mekenyan O, Bringezu F, Schüürmann G (2013) A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH. Regul Toxicol Pharmacol 66(3):301–314CrossRefGoogle Scholar
  30. 30.
    OECD (2007) Guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models, vol OECD Environment Health and Safety Publications, Series on testing and assessment, vol 69. OECD, ParisGoogle Scholar
  31. 31.
    JRC QSAR Model Database. https://qsardb.jrc.ec.europa.eu/qmrf/
  32. 32.
    Ruusmann V, Sild S, Maran U (2015) QSAR DataBank repository: open and linked qualitative and quantitative structure–activity relationship models. J Cheminform 7(1):32.  https://doi.org/10.1186/s13321-015-0082-6CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
  36. 36.
  37. 37.
    ECOTOX Knowledgebase (2019) https://cfpub.epa.gov/ecotox/
  38. 38.
  39. 39.
    Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz GY, Niemela J, Mekenyan OG (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45:839–849CrossRefGoogle Scholar
  40. 40.
    Kühne R, Ebert RU, Schüürmann G (2009) Chemical domain of QSAR models from atom-centered fragments. J Chem Inf Model 49:2660–2669CrossRefGoogle Scholar
  41. 41.
    Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DT, van de Sandt JJM, Tong W, Veith GD, Yang C (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. ATLA 33:155–173PubMedGoogle Scholar
  42. 42.
    Jaworska JS, Nikolova-Jeliazkova N, Aldenberg T (2005) QSAR applicability domain estimation by projection of the training set in descriptor space: a review. ATLA 33:445–459PubMedGoogle Scholar
  43. 43.
    Gabbert S, Weikard HP (2013) Sequential testing of chemicals when costs matter: a value-of-information approach. Human Ecol Risk Assess 19(4):1067–1088CrossRefGoogle Scholar
  44. 44.
    OECD (2019) Guidance document on aqueous-phase aquatic toxicity testing of difficult test substances, Series on testing and assessment. OECD Publishing, ParisGoogle Scholar
  45. 45.
    Ahlers J, Riedhammer C, Vogliano M, Ebert R-U, Kühne R, Schüürmann G (2006) Acute to chronic ratios in aquatic toxicity—variation across trophic levels and relationship with chemical structure. Environ Toxicol Chem 25(11):2937–2945.  https://doi.org/10.1897/05-701R.1CrossRefPubMedGoogle Scholar
  46. 46.
    Nendza M, Wenzel A, Müller M, Lewin G, Simetska N, Stock F, Arning J (2016) Screening for potential endocrine disruptors in fish: evidence from structural alerts and in vitro and in vivo toxicological assays. Environ Sci Eur 28(1):26.  https://doi.org/10.1186/s12302-016-0094-5CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Analytical LaboratoryLuhnstedtGermany
  2. 2.ConsultantBerlinGermany
  3. 3.Bruno Bock ThiochemicalsMarschachtGermany

Personalised recommendations