A Brief Introduction to Quantitative Structure-Activity Relationships as Useful Tools in Predictive Ecotoxicology

  • Rahul Balasaheb Aher
  • Kabiruddin Khan
  • Kunal RoyEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


This introductory chapter highlights the applications of quantitative structure-activity relationships (QSARs) in the assessment of ecotoxicological risk posed by the chemicals used in our day-to-day life and in the industries. A wide variety of chemicals (industrial substances/toxicants/pollutants) are emitted into the environment from various sources. These chemicals may be pharmaceuticals, personal care products, nanomaterials, plasticizers, flame retardants, endocrine disruptors, pesticides, persistent organic pollutants (POPs), etc. The continuous emissions of chemicals into the environment and the resultant pollution effects and potential exposure of living organisms and humans to these noxious substances may pose a risk to the ecosystem and human health. The experimental determination of toxicities of these chemicals involving different aquatic organisms and laboratory animals is a lengthy, time-consuming, and costly process. In this scenario, QSAR is quite useful for the prediction of toxicities of these chemicals prior to their use on a large scale. QSAR models could also be used further to predict the toxicity of any designed chemicals and would thus be helpful for green chemical design.

Key words

QSAR Pollutants Toxicants Ecotoxicity Aquatic organisms Contaminants of emerging concern (COEC) Data gap Read-across 



KK thanks the Indian Council of Medical Research, New Delhi, for financial support in the form of a senior research fellowship.


  1. 1.
    De P, Roy K (2018) Greener chemicals for the future: QSAR modelling of the PBT index using ETA descriptors. SAR QSAR Environ Res 29:319–337PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Gajewicz A, Jagiello K, Cronin M, Leszczynski J, Puzyn T (2017) Addressing a bottle neck for regulation of nanomaterials: quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available. Environ Sci Nano 4:346–358CrossRefGoogle Scholar
  3. 3.
    Roy K (2019) In silico drug design: repurposing techniques and methodologies. Academic Press, New YorkGoogle Scholar
  4. 4.
    Dearden JC (2017) The history and development of quantitative structure-activity relationships (QSARs). In: Oncology: breakthroughs in research and practice. IGI Global, Hershey, pp 67–117CrossRefGoogle Scholar
  5. 5.
    Khan K, Benfenati E, Roy K (2019) Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: ranking and prioritization of the DrugBank database compounds. Ecotox Environ Safe 168:287–297CrossRefGoogle Scholar
  6. 6.
    OECD (2014) Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models, OECD series on testing and assessment, no. 69. OECD Publishing, Paris. Available at
  7. 7.
    Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152(229):18–33CrossRefGoogle Scholar
  8. 8.
    Hu X, Hu Y, Vogt M, Stumpfe D, Bajorath J (2012) MMP-cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs. J Chem Inf Model 52:1138–1145PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kar S, Gajewicz A, Puzyn T, Roy K, Leszczynski J (2014) Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Ecotoxicol Environ Saf 107:162–169PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Todeschini R, Consonni V (2000) Methods and principles in medicinal chemistry. In: Kubinyi H, Timmerman H (Series eds) Handbook of molecular descriptors. Wiley-VCH, WeinheimGoogle Scholar
  11. 11.
    Golmohammadi H, Dashtbozorgi Z, Acree WE Jr (2012) Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Eur J Pharm Sci 47:421–429PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137–148CrossRefGoogle Scholar
  13. 13.
    Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc C-Appl 28:100–108Google Scholar
  14. 14.
    Roy K (2018) Quantitative structure-activity relationships (QSARs): a few validation methods and software tools developed at the DTC laboratory. J Indian Chem Soc 95:1497–1502Google Scholar
  15. 15.
    Khan PM, Roy K (2018) Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR). Expert Opin Drug Dis 13:1075–1089CrossRefGoogle Scholar
  16. 16.
    De P, Aher RB, Roy K (2018) Chemometric modeling of larvicidal activity of plant derived compounds against zika virus vector Aedes aegypti: application of ETA indices. RSC Adv 8:4662–4670CrossRefGoogle Scholar
  17. 17.
    De P, Kar S, Roy K, Leszczynski J (2018) Second generation periodic table-based descriptors to encode toxicity of metal oxide nanoparticles to multiple species: QSTR modeling for exploration of toxicity mechanisms. Environ Sci-Nano 5:2742–2760CrossRefGoogle Scholar
  18. 18.
    Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic Press, AmsterdamGoogle Scholar
  19. 19.
    Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemometr Intell Lab Syst 145:22–29CrossRefGoogle Scholar
  20. 20.
    Roy K, Mitra I (2011) On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen 14:450–474PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52:396–408PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Roy K (2019) Multi-target drug design using chem-bioinformatic approaches. Springer, New YorkCrossRefGoogle Scholar
  23. 23.
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130CrossRefGoogle Scholar
  24. 24.
    Baumann D, Baumann K (2014) Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation. J Cheminform 6:47PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Roy K, Ambure P (2016) The “double cross-validation” software tool for MLR QSAR model development. Chemom Intell Lab Syst 159:108–126CrossRefGoogle Scholar
  26. 26.
    Roy K, Ambure P, Kar S, Ojha PK (2018) Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J Chemom 32:e2992CrossRefGoogle Scholar
  27. 27.
    Roy K, Ambure P, Kar S (2018) “Prediction reliability indicator”: a new tool to judge the quality of predictions from QSAR models for new query compounds. In: 24 May 2018 in MOL2NET 2018. International conference on multidisciplinary sciences, MDPI AG, BaselGoogle Scholar
  28. 28.
    Roy K, Ambure P, Kar S (2018) How precise are our quantitative structure-activity relationship derived predictions for new query chemicals? ACS Omega 3:11392–11406PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Khan K, Khan PM, Lavado G, Valsecchi C, Pasqualini J, Baderna D, Marzo M, Lombardo A, Roy K, Benfenati E (2019) QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors. Chemosphere. Scholar
  30. 30.
    Kar S, Roy K, Leszczynski J (2017) On applications of QSARs in food and agricultural sciences: history and critical review of recent developments. In: Advances in QSAR modeling. Springer, Cham, pp 203–302CrossRefGoogle Scholar
  31. 31.
    Khan PM, Roy K, Benfenati E (2019) Chemometric modeling of Daphnia magna toxicity of agrochemicals. Chemosphere 224:470–479PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Roy K (2017) Advances in QSAR modeling. In: Applications in pharmaceutical, chemical, food, agricultural and environmental sciences. Springer, Cham, p 555Google Scholar
  33. 33.
    Khan K, Kar S, Sanderson H, Roy K, Leszczynski J (2017) Ecotoxicological assessment of pharmaceuticals using computational toxicology approaches: QSTR and interspecies QTTR modeling. In: Proceedings of MOL2NET 2017, international conference on multidisciplinary sciences, 3rd edn. MDPI AG, Basel, p 1Google Scholar
  34. 34.
    Das S, Ojha PK, Roy K (2017) Multilayered variable selection in QSPR: a case study of modeling melting point of bromide ionic liquids. Int J Quant Struct-Prop Relat (IJQSPR) 2:106–124Google Scholar
  35. 35.
    Das S, Ojha PK, Roy K (2017) Development of a temperature dependent 2D-QSPR model for viscosity of diverse functional ionic liquids. J Mol Liq 240:454–467CrossRefGoogle Scholar
  36. 36.
    Ojha PK, Kar S, Roy K, Leszczynski J (2019) Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling. Nanotoxicology 31:14–34CrossRefGoogle Scholar
  37. 37.
    Ghosh S, Ojha PK, Roy K (2019) Exploring QSPR modeling for adsorption of hazardous synthetic organic chemicals (SOCs) by SWCNTs. Chemosphere 228:545–555PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Roy J, Ojha PK, Roy K (2019) Risk assessment of heterogeneous TiO2-based engineered nanoparticles (NPs): a QSTR approach using simple periodic table based descriptors. Nanotoxicology 13:701–716PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Khan K, Roy K (2017) Ecotoxicological modelling of cosmetics for aquatic organisms: a QSTR approach. SAR QSAR Environ Res 28:567–594PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Hossain KA, Roy K (2018) Chemometric modeling of toxicity of contaminants of emerging concern to Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and i-QSTTR approaches. In: MOL2NET 2018, international conference on multidisciplinary sciences, 4th edn.
  41. 41.
    Ghanem OB, Mutalib MIA, Leveque J-M, El-Harbawi M (2017) Development of QSAR model to predict the ecotoxicity of Vibrio fischeri using COSMO-RS descriptors. Chemosphere 170:242–250PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Farahani SR, Sohrabi MR, Ghasemi JB (2018) A detailed structural study of cytotoxicity effect of ionic liquids on the leukemia rat cell line IPC-81 by three dimensional quantitative structure toxicity relationship. Ecotoxicol Environ Saf 158:256–265PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Das RN, Sintra TE, Coutinho JAP, Ventura SPM, Roy K, Popelier PLA (2016) Development of predictive QSAR models for Vibrio fischeri toxicity of ionic liquids and their true external and experimental validation tests. Toxicol Res 5:1388–1399CrossRefGoogle Scholar
  44. 44.
    Das RN, Roy K, Popelier PLA (2015) Interspecies quantitative structure-toxicity-toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus. Ecotoxicol Environ Saf 122:497–520PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bubalo MC, Radošević K, Srček VG, Das RN, Popelier P, Roy K (2015) Cytotoxicity towards CCO cells of imidazolium ionic liquids with functionalized side chains: preliminary QSTR modeling using regression and classification based approaches. Ecotoxicol Environ Saf 112:22–28PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Toropova AP, Toropov AA, Veselinović AM, Veselinović JB, Benfenati E, Leszczynska D, Leszczynski J (2016) Nano-QSAR: model of mutagenicity of fullerene as a mathematical function of different conditions. Ecotoxicol Environ Saf 124:32–36PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Basant N, Gupta S (2017) Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Nanotoxicology 11:339–350PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Pan Y, Li T, Cheng J, Telesca D, Zink JI, Jiang J (2016) Nano-QSAR modeling for predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors. RSC Adv 6:25766–25775CrossRefGoogle Scholar
  49. 49.
    Raghav M, Eden S, Mitchell K, Witte B (2013) Contaminants of emerging concern in water. Water Resources Research Center College of Agriculture and Life Sciences, ArizonaGoogle Scholar
  50. 50.
    Kar S, Roy K, Leszczynski J (2018) Impact of pharmaceuticals on the environment: risk assessment using QSAR modeling approach. In: Computational toxicology. Springer, New York, pp 395–443CrossRefGoogle Scholar
  51. 51.
    Kar S, Sepðlveda MS, Roy K, Leszczynski J (2017) Endocrine-disrupting activity of per-and polyfluoroalkyl substances: exploring combined approaches of ligand and structure based modeling. Chemosphere 184:514–523PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gramatica P, Cassani S, Sangion A (2016) Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives design. Green Chem 18:4393–4406CrossRefGoogle Scholar
  53. 53.
    Sangion A, Gramatica P (2016) Ecotoxicity interspecies QAAR models from Daphnia toxicity of pharmaceuticals and personal care products. SAR QSAR Environ Res 27:781–798PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kar S, Das RN, Roy K, Leszczynski J (2016) Can toxicity for different species be correlated?: the concept and emerging applications of interspecies quantitative structure-toxicity relationship (i-QSTR) modeling, (IJQSPR) 1:23–51CrossRefGoogle Scholar
  55. 55.
    Hossain KA, Roy K (2018) Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches. Ecotoxicol Environ Saf 166:92–101PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Khan K, Roy K, Benfenati E (2019) Ecotoxicological QSAR modeling of endocrine disruptor chemicals. J Hazard Mater 369:707–718PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H (2012) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46:607–621PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Cockburn A, Bradford R, Buck N, Constable A, Edwards G, Haber B, Hepburn P, Howlett J, Kampers F, Klein C (2012) Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem Toxicol 50:2224–2242PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sellers K, Deleebeeck NM, Messiean M, Jackson M, Bleeker EAJ, Sijm D, Van Broekhuizen F (2015) Grouping nanomaterials: a strategy towards grouping and read-across, Rijksinstituut voor Volksgezondheid en Milieu RIVMGoogle Scholar
  60. 60.
    Lamon L, Asturiol D, Richarz A, Joossens E, Graepel R, Aschberger K, Worth A (2018) Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques. Part Fibre Toxicol 15:37PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sizochenko N, Mikolajczyk A, Karolina J, Puzyn T, Leszczynski J, Rasulev B (2018) How the toxicity of nanomaterials towards different species could be simultaneously evaluated: a novel multi-nano-read-across approach. Nanoscale 10:582–591PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    George S, Tian X, Robert R, Yan Z, Zhaoxia J, Sijie L, Xiang W (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5:1805–1817PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Rahul Balasaheb Aher
    • 1
  • Kabiruddin Khan
    • 1
  • Kunal Roy
    • 1
    Email author
  1. 1.Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical TechnologyJadavpur UniversityKolkataIndia

Personalised recommendations