QSAR Modeling of Dye Ecotoxicity

  • Simona Funar-Timofei
  • Gheorghe IliaEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Dyes have a long history, beginning in ancient times, when natural plant and insect sources were used to create them. Although they are important components in our daily lives, various synthetic dyes have been found to be toxic to human, animal, and plant health, and to the environment. The complexity and costs of the experimental methods used to study dye toxicity and to treat dyeing wastewaters have guided researchers to study theoretical alternative (nonanimal) approaches, which are less expensive. Quantitative structure–activity/property relationship (QSAR/QSPR) techniques can be used for complementary knowledge of in vivo effects in both animals and humans, and for avoiding expensive experimental effluent treatment processes. In this chapter, QSAR/QSPR methods employed in the estimation of dye ecotoxicity are presented. QSAR models reported in the literature for acute toxicity, allergenicity, mutagenicity, carcinogenicity, degradation products, animal and plant toxicity, abiotic degradation and decoloration, bioelimination and bioreduction, and adsorption removal of dyes are analyzed and discussed. QSAR/QSPR techniques combined with virtual screening approaches constitute a powerful tool in the design of dyes with improved ecotoxicological properties.

Key words

Dyes Ecotoxicity QSAR QSPR Toxicity Allergenicity Mutagenicity Carcinogenicity Ecology Biodegradation 



This work was financially supported by Project No. 1.1/2018 of the “Coriolan Dragulescu” Institute of Chemistry of the Romanian Academy.


  1. 1.
    Bafana A, Devi SS, Chakrabarti T (2011) Azo dyes: past, present and the future. Environ Rev 19:350–370CrossRefGoogle Scholar
  2. 2.
    Booth G, Zollinger H, McLaren K, Sharples WG, Westwell A (2000) Dyes, general survey. Ullmann’s encyclopedia of industrial chemistry, vol 11. Wiley-VCH, Weinheim, pp 675–729Google Scholar
  3. 3.
    Zollinger H (2003) Color chemistry: synthesis, properties and applications of organic dyes and pigments, 3rd edn. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Garfield S (2002) Mauve: how one man invented a color that changed the world? Norton, New YorkGoogle Scholar
  5. 5.
    Colour index online. Available from Accessed 15 Jan 2019
  6. 6.
    Gregory P (1990) Classification of dyes by chemical structure. In: Waring DR, Hallas G (eds) The chemistry and application of dyes. Topics in Applied Chemistry. Springer, BostonGoogle Scholar
  7. 7.
    Starovoitova D, Odido D (2014) Assessment of toxicity of textile dyes and chemicals via materials safety data sheets. Res Rev BioSci 9:241–248Google Scholar
  8. 8.
    Chequer FMD, Dorta DJ, de Oliveira DP (2011) Azo dyes and their metabolites: does the discharge of the azo dye into water bodies represent human and ecological risks? In: Hauser P (ed) Advances in treating textile effluent. IntechOpen, Rijeka, pp 27–48Google Scholar
  9. 9.
    Alabdraba WMS, Ali Albayati MB (2014) Biodegradation of azo dyes—a review. Int J Environ Eng Nat Resour 1:179–189Google Scholar
  10. 10.
    Ratna, Padhi BS (2012) Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int J Env Sci 3:940–945Google Scholar
  11. 11.
    Sponza DT, Isik M (2005) Toxicity and intermediates of CI Direct Red 28 dye through sequential anaerobic/aerobic treatment. Process Biochem 40:2735–2744CrossRefGoogle Scholar
  12. 12.
    Nagel-Hassemer ME, Carvalho-Pinto CRS, Matias WG, Lapolli FR (2011) Removal of coloured compounds from textile industry effluents by UV/H2O2 advanced oxidation and toxicity evaluation. Environ Techn 32:1867–1874CrossRefGoogle Scholar
  13. 13.
    Young L, Yu J (1997) Ligninase-catalysed decolourization of synthetic dyes. Water Res 31:1187–1193CrossRefGoogle Scholar
  14. 14.
    Croce R, Cina F, Lombardo A, Crispeyn G, Cappelli CI, Vian M, Maiorana S, Benfenati E, Baderna D (2017) Aquatic toxicity of several textile dye formulations: acute and chronic assays with Daphnia magna and Raphidocelis subcapitata. Ecotoxicol Environ Saf 144:79–87PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ayadi I, Souissi Y, Jlassi I, Peixoto F, Mnif W (2016) Chemical synonyms, molecular structure and toxicological risk assessment of synthetic textile dyes: a critical review. J Develop Drugs 5:151Google Scholar
  16. 16.
    Puvaneswari N, Muthukrishnan J, Gunasekkaren P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exper Biol 44:618–626Google Scholar
  17. 17.
    Anliker R (1979) Ecotoxicology of dyestuffs—a joint effort by industry. Ecotox Environ Safety 3:59–74CrossRefGoogle Scholar
  18. 18.
    Golka K, Kopps S, Myslak ZW (2004) Carcinogenicity of azo colorants: influence of solubility and bioavailability—a review. Tox Lett 151:203–210CrossRefGoogle Scholar
  19. 19.
    Cronin MTD (2017) (Q)SARs to predict environmental toxicities: current status and future needs. Environ Sci: Proc Impacts 19:213–220Google Scholar
  20. 20.
    Luan F, Xu X, Liu H, Soeiro D, Cordeiro MN (2013) Review of quantitative structure–activity/property relationship studies of dyes: recent advances and perspectives. Color Technol 129:173–186CrossRefGoogle Scholar
  21. 21.
    Polanski J, Gieleciak R, Wyszomirski M (2003) Comparative molecular surface analysis (CoMSA) for modeling dye–fiber affinities of the azo and anthraquinone dyes. J Chem Inf Comput Sci 43:1754–1762PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Polanski J, Gieleciak R, Wyszomirski M (2004) Mapping dye pharmacophores by the comparative molecular surface analysis (CoMSA): application to heterocyclic monoazo dyes. Dyes Pigments 62:61–76CrossRefGoogle Scholar
  23. 23.
    Timofei S, Kurunczi L, Suzuki T, Fabian WMF, Muresan S (1997) Multiple linear regression (MLR) and neural network (NN) calculations of some disazo dye adsorption on cellulose. Dyes Pigments 34:181–193CrossRefGoogle Scholar
  24. 24.
    Oprea TI, Kurunczi L, Timofei S (1997) Quantitative structure–activity relationship studies of disperse azo dyes. Toward the negation of the pharmacophore theory of dye–fiber interaction. Dyes Pigments 33:41–64CrossRefGoogle Scholar
  25. 25.
    Timofei S, Fabian WMF (1998) Comparative molecular field analysis (CoMFA) of heterocyclic monoazo dye–fibre affinities. J Chem Inf Comput Sci 38:1218–1222CrossRefGoogle Scholar
  26. 26.
    Timofei S, Schmidt W, Kurunczi L, Simon Z (2000) A review of QSAR for dye affinity for cellulose fibres. Dyes Pigments 47:5–16CrossRefGoogle Scholar
  27. 27.
    Funar-Timofei S, Schuurmann G (2002) Comparative molecular field analysis (CoMFA) of anionic azo dye–fibre affinities I: gas-phase molecular orbital descriptors. J Chem Inf Comput Sci 42:788–795PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Timofei S, Kurunczi L, Schmidt W, Simon Z (2002) Steric and electrostatic effects in dye–cellulose interactions by the MTD and CoMFA approaches. SAR & QSAR Environ Res 13:219–226CrossRefGoogle Scholar
  29. 29.
    Schuurmann G, Funar-Timofei S (2003) Multilinear regression and comparative molecular field analysis (CoMFA) of azo dye–fibre affinities II: inclusion of solution-phase molecular orbital descriptors. J Chem Inf Comput Sci 43:1502–1515PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kurunczi L, Funar-Timofei S, Bora A, Seclaman E (2007) Application of the MTD-PLS method to heterocyclic dye–cellulose interactions. Int J Quantum Chem 107:2057–2065CrossRefGoogle Scholar
  31. 31.
    Funar-Timofei S, Fabian WMF, Kurunczi L, Goodarzi M, Tahir AS, Vander Heyden Y (2012) Modelling heterocyclic azo dye affinities for cellulose fibers by computational approaches. Dyes Pigments 94:278–289CrossRefGoogle Scholar
  32. 32.
    Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180CrossRefGoogle Scholar
  33. 33.
    Dearden JC, Cronin MTD, Kaiser KLE (2009) How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241–266CrossRefGoogle Scholar
  34. 34.
    Walker JD, Dearden JC, Schultz TW et al (2003) QSARs for new practitioners. In: Walker JD (ed) QSARs for pollution prevention, toxicity screening, risk assessment, and web applications. SETAC, PensacolaGoogle Scholar
  35. 35.
    Walker JD, Jaworska J, Comber MHI, Schultz TW, Dearden JC (2003) Guidelines for developing and using quantitative structure–activity relationships. Environ Toxicol Chem 22:1653–1665PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Livingstone DJ (2004) Building QSAR models: a practical guide. In: Cronin MTD, Livingstone DJ (eds) Predicting chemical toxicity and fate. CRC, Boca RatonGoogle Scholar
  37. 37.
    Cherkasov A, Muratov EN, Fourches D et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57:4977–5010PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Schultz TW, Cronin MTD, Walker JD, Aptula AO (2003) Quantitative structure–activity relationships (QSARs) in toxicology: a historical perspective. J Molec Structure (Theochem) 622:1–22CrossRefGoogle Scholar
  39. 39.
    Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29:476–488CrossRefGoogle Scholar
  40. 40.
    Gramatica P (2013) On the development and validation of QSAR models. In: Reisfeld B, Mayeno A (eds) Computational toxicology, Methods in molecular biology (methods and protocols), vol 930. Humana, Totowa, pp 499–526CrossRefGoogle Scholar
  41. 41.
    Cronin MTD, Livingstone DJ (2004) Predicting chemical toxicity and fate. CRC, Boca RatonCrossRefGoogle Scholar
  42. 42.
    Moore DRJ, Breton RL, Macdonald DB (2003) A comparison of model performance for six quantitative structure–activity relationship packages that predict acute toxicity to fish. Environ Toxicol Chem 22:1799–1809PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Alexander DLJ, Tropsha A, Winkler DA (2015) Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J Chem Inf Model 55:1316–1322PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Environment Directorate, OECD [Organisation for Economic Co-operation and Development] (2004) The report from the Expert Group on (Quantitative) Structure–Activity Relationships [(Q)SARs] on the principles for the validation of (Q)SARs. Accessed 10 Feb 2019
  45. 45.
    OECD [Organisation for Economic Co-operation and Development] (2007) Guidance document on the validation of (quantitative) structure–activity relationships [(Q)SAR] models. Accessed 13 Feb 2019
  46. 46.
    OECD [Organisation for Economic Co-operation and Development]. OECD principles for the validation, for regulatory purposes, of (quantitative) structure−activity relationship models. Accessed 27 Feb 2019
  47. 47.
    Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29CrossRefGoogle Scholar
  48. 48.
    Schultz TW, Cronin MTD (2003) Essential and desirable characteristics of ecotoxicity quantitative structure–activity relationships. Environ Toxicol Chem 22:599–607PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Clarke EA, Steinle D (1995) Health and environmental safety aspects of organic colorants. Rev Prog Color 25:1–5CrossRefGoogle Scholar
  50. 50.
    Funar-Timofei S, Kurunczi L, Vlaia V et al. (2008) Quantitative dye structure–toxicity relationships study by PLS. Paper presented at the 2nd European Computing Conference: New Aspects on Computers Research (ECC’08), Malta, 11–13 September 2008Google Scholar
  51. 51.
    Uter W, Werfel T, White IR et al (2018) Contact allergy: a review of current problems from a clinical perspective. Int J Environ Res Public Health 15:1108. Scholar
  52. 52.
    Rovira J, Domingo JL (2019) Human health risks due to exposure to inorganic and organic chemicals from textiles: a review. Environ Res 168:62–69PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nohynek GJ, Antignac E, Re T, Toutain H (2010) Safety assessment of personal care products/cosmetics and their ingredients. Tox Appl Pharm 243:239–259CrossRefGoogle Scholar
  54. 54.
    Sosted H, Rustemeyer T, Goncalo M et al (2013) Contact allergy to common ingredients in hair dyes. Contact Dermat 69:32–39CrossRefGoogle Scholar
  55. 55.
    Sosted H, Basketter DA, Estrada E et al (2004) Ranking of hair dye substances according to predicted sensitization potency: quantitative structure–activity relationships. Contact Dermat 51:241–254CrossRefGoogle Scholar
  56. 56.
    Estrada E, Patlewicz G, Chamberlain M et al (2003) Computer-aided knowledge generation for understanding skin sensitization mechanisms: the TOPS-MODE approach. Chem Res Toxicol 16:1226–1235PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Williams TN, Kuenemann MA, Den Driessche V et al (2018) Toward the rational design of sustainable hair dyes using cheminformatics approaches: step 1. Database development and analysis. ACS Sustain Chem Eng 6:2344–2352CrossRefGoogle Scholar
  58. 58.
    Berthold MR, Cebron N, Dill F et al (2008) KNIME: the Konstanz information miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R (eds) Data analysis, machine learning and applications. Studies in classification, data analysis, and knowledge organization. Springer, BerlinGoogle Scholar
  59. 59.
    Alves VM, Muratov E, Fourches D et al (2015) Predicting chemically induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicol Appl Pharmacol 284:262–272PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Braga RC, Alves VM, Muratov EN et al (2017) Pred-skin: a fast and reliable web application to assess skin sensitization effect of chemicals. J Chem Inf Model 57:1013–1017PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Edwards LC, Freeman HS, Claxton LD (2004) Developing azo and formazan dyes based on environmental considerations: Salmonella mutagenicity. Mutation Res 546:17–28PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Levine WG (1991) Metabolism of azo dyes: implication for detoxication and activation. Drug Metabol Rev 23:253–309CrossRefGoogle Scholar
  63. 63.
    Chung K-T, Chen S-C, Claxton LD (2006) Review of the Salmonella typhimurium mutagenicity of benzidine, benzidine analogues, and benzidine-based dyes. Mutation Res 612:58–76PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sushko I, Novotarskyi S, Korner R et al (2010) Applicability domains for classification problems: benchmarking of distance to models for Ames mutagenicity set. J Chem Inf Model 50:2094–2111PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Garg A, Bhat KL, Bock CW (2002) Mutagenicity of aminoazobenzene dyes and related structures: a QSAR/QPAR investigation. Dyes Pigments 55:35–52CrossRefGoogle Scholar
  66. 66.
    Pasha FA, Dal Nam K, Cho SJ (2007) CoMFA based quantitative structure toxicity relationship of azo dyes. Molec Cell Toxicol 3:145–149Google Scholar
  67. 67.
    Pasha F, Muddassar M, Chung HW et al (2008) Hologram and 3D-quantitative structure toxicity relationship studies of azo dyes. J Mol Model 14:293–302PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Rosenkranz HS, Klopman G (1989) Structural basis of the mutagenicity of phenylazoaniline dyes. Mutation Res 221:217–234PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Rosenkranz HS, Klopman G (1990) Structural basis of the mutagenicity of l-amino-2-naphthol-based azo dyes. Mutagenesis 5:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sztandera L GA, Hayik S et al (2003) Mutagenicity of aminoazo dyes and their reductive-cleavage metabolites: a QSAR/QPAR investigation. Dyes Pigments 59:117–133CrossRefGoogle Scholar
  71. 71.
    Sztandera L, Trachtman M, Bock C et al (2003) Soft computing in the design of nontoxic chemicals. J Chem Inf Comput Sci 43:189–198PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Gadaleta D, Porta N, Vrontaki E et al (2017) Integrating computational methods to predict mutagenicity of aromatic azo compounds. J Environ Sci Health C 35:239–257CrossRefGoogle Scholar
  73. 73.
    Brown MA, De Vito SC (1993) Predicting azo dye toxicity. Critical Rev Environ Sci Tech 23:249–324CrossRefGoogle Scholar
  74. 74.
    Chung K-T (2016) Azo dyes and human health: a review. J Environ Sci Health C 34:233–261CrossRefGoogle Scholar
  75. 75.
    Bolt HM, Golka K (2007) The debate on carcinogenicity of permanent hair dyes: new insights. Critical Rev Toxicol 37:521–536CrossRefGoogle Scholar
  76. 76.
    Brown R, White S, Goode J et al. (2013) Use of QSAR modeling to predict the carcinogenicity of color additives. In: Paper presented at the ASME 2013 Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation (FMD 2013), Washington DC, 11–13 September 2013Google Scholar
  77. 77.
    Buck STG, Bettanin F, Orestes E et al (2017) Photodynamic efficiency of xanthene dyes and their phototoxicity against a carcinoma cell line: a computational and experimental study. J Chem:Article ID 7365263, 9 pages. Scholar
  78. 78.
    Pooler JP, Valenzeno DP (1979) Physicochemical determinants of the sensitizing effectiveness for photooxidation of nerve membranes by fluorescein derivatives. Photochem Photobiol 30:491–498PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Enslein K, Borgstedt HH (1989) A QSAR model carcinogenicity: for the estimation of example application to an azo-dye. Toxicology Lett 49:107–121CrossRefGoogle Scholar
  80. 80.
    Osugi ME, Umbuzeiro GA, De Castro FJ, Zanoni MV (2006) Photoelectrocatalytic oxidation of remazol turquoise blue and toxicological assessment of its oxidation products. J Hazard Mater 137:871–877PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Wong PK, Yuen PY (1996) Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Res 30:1736–1744CrossRefGoogle Scholar
  82. 82.
    Hunger K (2005) Toxicology and toxicological testing of colorants. Rev Prog Color 35:46–89Google Scholar
  83. 83.
    Brüschweiler BJ, Merlot C (2017) Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul Toxicol Pharmacol 88:214–226PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bentzien J, Hickey ER, Kemper RA et al (2010) An in silico method for predicting Ames activities of primary aromatic amines by calculating the stabilities of nitrenium ions. J Chem Inf Model 50:274–297PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bhat KL, Hayik S, Sztandera L, Bock CW (2005) Mutagenicity of aromatic and heteroaromatic amines and related compounds: a QSAR investigation. QSAR Comb Sci 24:831–843CrossRefGoogle Scholar
  86. 86.
    Chung K-T, Kirkovsky L, Kirkovsky A, Purcell WP (1997) Review of mutagenicity of monocyclic aromatic amines: quantitative structure–activity relationships. Mutat Res 387:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Karelson M, Sild S, Maran U (2000) Non-linear QSAR treatment of genotoxicity. Mol Simulat 24:229–242CrossRefGoogle Scholar
  88. 88.
    Ding F, Li X-N, Diao J-X et al (2012) Potential toxicity and affinity of triphenylmethane dye malachite green to lysozyme. Ecotoxicol Environ Saf 78:41–49PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Nelms MD, Ates G, Madden JC et al (2015) Proposal of an in silico profiler for categorisation of repeat dose toxicity data of hair dyes. Arch Toxicol 89:733–741PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Horobin RW (2014) Where do dyes go inside living cells? Predicting uptake, intracellular localisation, and accumulation using QSAR models. Color Technol 130:155–173CrossRefGoogle Scholar
  91. 91.
    Oros G, Cserhati T, Forgacs E (2003) Separation of the strength and selectivity of the microbiological effect of synthetic dyes by spectral mapping technique. Chemosphere 52:185–193PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Hassaan MA, El Nemr A (2017) Health and environmental impacts of dyes: mini review. Am J Environ Sci 1:64–67Google Scholar
  93. 93.
    Xie X, Liu N, Yang F et al (2018) Comparative study of antiestrogenic activity of two dyes after Fenton oxidation and biological degradation. Ecotoxicol Environ Saf 164:416–424PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Floris M, Manganaro A, Nicolotti O et al (2014) A generalizable definition of chemical similarity for read-across. J Cheminform 6:39PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Wang Y, Chen J, Ge L et al (2009) Experimental and theoretical studies on the photoinduced acute toxicity of a series of anthraquinone derivatives towards the water flea (Daphnia magna). Dyes Pigments 83:276–280CrossRefGoogle Scholar
  96. 96.
    Newsome LD, Nabholz JV, Kim A (1996) Designing aquatically safer chemicals. In: DeVito S (ed) Designing safer chemicals, ACS symposium series, chapter 9. ACS, Washington, DCGoogle Scholar
  97. 97.
    Abbasitabar F, Zare-Shahabadi V (2017) In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree–based modeling approach. Chemosphere 172:249–259PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Tugcu G, Sacan MT (2018) A multipronged QSAR approach to predict algal low-toxic-effect concentrations of substituted phenols and anilines. J Hazard Mater 344:893–901PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Rojo-Nieto E, Perales-Vargas-Machuca JA (2012) Microbial degradation of PAHs: organisms and environmental compartments. In: Singh SN (ed) Microbial degradation of xenobiotics. Springer, BerlinGoogle Scholar
  100. 100.
    Mondal PK, Chauhan B (2012) Microbial degradation of dye-containing wastewater. In: Singh SN (ed) Microbial degradation of xenobiotics. Springer, BerlinGoogle Scholar
  101. 101.
    Weglarz-Tomczak E, Gorecki L (2012) Azo dyes—biological activity and synthetic strategy. Chemik 66:1298–1307Google Scholar
  102. 102.
    Byberg R, Cobb J, Diez Martin L et al (2013) Comparison of photocatalytic degradation of dyes in relation to their structure. Environ Sci Pollut Res 20:3570–3581CrossRefGoogle Scholar
  103. 103.
    Kusic H, Koprivanac N, Bozic AL (2013) Environmental aspects on the photodegradation of reactive triazine dyes in aqueous media. J Photochem Photobiol A Chem 252:131–144CrossRefGoogle Scholar
  104. 104.
    Li B, Dong Y, Ding Z (2013) Heterogeneous Fenton degradation of azo dyes catalyzed by modified polyacrylonitrile fiber Fe complexes: QSPR (quantitative structure property relationship) study. J Environ Sci (China) 25:1469–1476CrossRefGoogle Scholar
  105. 105.
    Xu Y, X-Y C, Li Y et al (2016) Quantitative structure–property relationship (QSPR) study for the degradation of dye wastewater by Mo–Zn–Al–O catalyst. J Mol Liq 215:461–466CrossRefGoogle Scholar
  106. 106.
    Zhu H, Guo W, Shen Z et al (2015) QSAR models for degradation of organic pollutants in ozonation process under acidic condition. Chemosphere 119:65–71PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Guimaraes OLC, Silva MB (2007) Hybrid neural model for decoloration by UV/H2O2 involving process variables and structural parameters characteristics to azo dyes. Chem Eng Prog 46:45–51CrossRefGoogle Scholar
  108. 108.
    Elhorri AM, Belaid KD, Zouaoui–Rabah M, Chadli R (2018) Theoretical study of the azo dyes dissociation by advanced oxidation using Fukui indices. DFT calculations. Comput Theor Chem 1130:98–106CrossRefGoogle Scholar
  109. 109.
    Suzuki T, Timofei S, Kurunczi L et al (2001) Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere 45:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Papa E, Dearden J, Gramatica P (2007) Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere 67:351–358PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Y L, D-L X (2007) Quantitative structure–activity relationship study on the biodegradation of acid dyestuffs. J Environ Sci 19:800–804CrossRefGoogle Scholar
  112. 112.
    Greaves A, Churchley J, Hutchings M et al (2001) A chemometric approach to understanding the bioelimination of anionic, water-soluble dyes by a biomass using empirical and semi-empirical molecular descriptors. Water Res 35:1225–1239PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Srinivasan S, Sadasivam SK, Gunalan S et al (2019) Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Environ Pollut 248:599–608PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Srinivasan S, Shanmugam G, Surwase SV et al (2017) In silico analysis of bacterial systems for textile azo dye decolorization and affirmation with wetlab studies. Clean (Weinh) 45:1600734. Scholar
  115. 115.
    Mon J, Flury M, Harsh JB (2006) A quantitative structure–activity relationships (QSAR) analysis of triarylmethane dye tracers. J Hydrol 316:84–97CrossRefGoogle Scholar
  116. 116.
    Metivier-Pignon H, Faur C, Cloirec PL (2007) Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms. Chemosphere 66:887–893PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Orucu E, Tugcu G, Sacan MT (2014) Molecular structure–adsorption study on current textile dyes. SAR QSAR Environ Res 25:983–998PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.“Coriolan Dragulescu” Institute of ChemistryTimisoaraRomania
  2. 2.West University Timisoara, Faculty of Chemistry–Biology and GeographyTimisoaraRomania

Personalised recommendations