Advertisement

Methodological Protocol for Assessing the Environmental Footprint by Means of Ecotoxicological Tools: Wastewater Treatment Plants as an Example Case

  • Roberta PedrazzaniEmail author
  • Pietro Baroni
  • Donatella Feretti
  • Giovanna Mazzoleni
  • Nathalie Steimberg
  • Chiara Urani
  • Gaia Viola
  • Ilaria Zerbini
  • Emanuele Ziliani
  • Giorgio Bertanza
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The ecotoxicological tools reveal to be profitably employable within the assessment of the so-called environmental footprint, which is commonly based on the results of a chemical monitoring. Due to the heterogeneity of biological endpoints and the possibility to explore several exposure frames, as well as to consider higher levels of organization (from cells to organisms and mesocosms), the definition of a protocol is desirable.

Key words

Activated sludge Baseline toxicity Bioassays Endocrine disruption Environmental footprint Genetic toxicity Protocol Modes of action Multi-tiered approach Wastewater 

Notes

Acknowledgments

We thank dr. Elisabetta Ceretti for her technical support in laboratory activity.

References

  1. 1.
    Krzeminski P, Tomei MC, Karaolia P, Langenhoff A, Almeida CMR, Felis E, Gritten F, Andersen HR, Fernandes T, Manaia CM, Rizzo L, Fatta-Kassinos D (2019) Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: a review. Sci Total Environ 648:1052–1081.  https://doi.org/10.1016/j.scitotenv.2018.08.130CrossRefPubMedGoogle Scholar
  2. 2.
    Teodosiu C, Gilca AF, Barjoveanu G, Fiore S (2018) Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. J Clean Prod Elsevier 197:1210.  https://doi.org/10.1016/j.jclepro.2018.06.247CrossRefGoogle Scholar
  3. 3.
    Papa M, Alfonsín C, Moreira MT, Bertanza G (2016) Ranking wastewater treatment trains based on their impacts and benefits on human health: a “biological assay and disease” approach. J Clean Prod 113:311–317.  https://doi.org/10.1016/j.jclepro.2015.11.021CrossRefGoogle Scholar
  4. 4.
    Papa M, Pedrazzani R, Bertanza G (2013) How green are environmental technologies? A new approach for a global evaluation: the case of WWTP effluents ozonation. Water Res 47:3679–3687.  https://doi.org/10.1016/j.watres.2013.04.015CrossRefPubMedGoogle Scholar
  5. 5.
    Chapman PM (2000) Whole effluent toxicity TESTING—usefulness, level of protection, and risk assessment. Environ Toxicol Chem 19:3. https://doi.org/10.1897/1551-5028(2000)019<0003:WETTUL>2.3.CO;2CrossRefGoogle Scholar
  6. 6.
    Ra JS, Kim HK, Chang NI, Kim SD (2007) Whole effluent toxicity (WET) tests on wastewater treatment plants with Daphnia magna and Selenastrum capricornutum. Environ Monit Assess 129:107–113.  https://doi.org/10.1007/s10661-006-9431-2CrossRefPubMedGoogle Scholar
  7. 7.
    Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh S-E (2016) Toxicity assessment using different bioassays and microbial biosensors. Environ Int 92–93:106–118.  https://doi.org/10.1016/j.envint.2016.03.003CrossRefPubMedGoogle Scholar
  8. 8.
    Gruiz K, Fekete-Kertész I, Kunglné-Nagy Z, Hajdu C, Feigl V, Vaszita E, Molnár M (2016) Direct toxicity assessment — methods, evaluation, interpretation. Sci Total Environ 563–564:803–812.  https://doi.org/10.1016/j.scitotenv.2016.01.007CrossRefPubMedGoogle Scholar
  9. 9.
    Norberg-King TJ, Embry MR, Belanger SE, Braunbeck T, Butler JD, Dorn PB, Farr B, Guiney PD, Hughes SA, Jeffries M, Journel R, Lèonard M, McMaster M, Oris JT, Ryder K, Segner H, Senac T, Van Der Kraak G, Whale G, Wilson P (2018) An international perspective on the tools and concepts for effluent toxicity assessments in the context of animal alternatives: reduction in vertebrate use. Environ Toxicol Chem 37:2745–2757.  https://doi.org/10.1002/etc.4259CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gargosova HZ, Urminska B (2017) Assessment of the efficiency of wastewater treatment plant using ecotoxicity tests, vol 26, pp 56–62Google Scholar
  11. 11.
    Tonkes M, De Graaf PJF, Graansma J (1999) Assessment of complex industrial effluents in the Netherlands using a whole effluent toxicity (or wet) approach. Water Sci Technol 39:55–61.  https://doi.org/10.1016/S0273-1223(99)00253-XCrossRefGoogle Scholar
  12. 12.
    Välitalo P, Perkola N, Seiler TB, Sillanpää M, Kuckelkorn J, Mikola A, Hollert H, Schultz E (2016) Estrogenic activity in Finnish municipal wastewater effluents. Water Res 88:740–749.  https://doi.org/10.1016/j.watres.2015.10.056CrossRefPubMedGoogle Scholar
  13. 13.
    Escher BI, Bramaz N, Quayle P, Rutishauser S, Vermeirssen EL (2008) Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery. J Environ Monit 10:622–631.  https://doi.org/10.1039/b800951aCrossRefPubMedGoogle Scholar
  14. 14.
    Avberšek M, Žegura B, Filipič M, Heath E (2011) Integration of GC-MSD and ER-Calux® assay into a single protocol for determining steroid estrogens in environmental samples. Sci Total Environ 409:5069–5075.  https://doi.org/10.1016/j.scitotenv.2011.08.020CrossRefPubMedGoogle Scholar
  15. 15.
    Arlos MJ, Parker WJ, Bicudo JR, Law P, Marjan P, Andrews SA, Servos MR (2018) Multi-year prediction of estrogenicity in municipal wastewater effluents. Sci Total Environ 610–611:1103–1112.  https://doi.org/10.1016/j.scitotenv.2017.08.171CrossRefPubMedGoogle Scholar
  16. 16.
    Caldwell DJ, Mastrocco F, Anderson PD, Länge R, Sumpter JP (2012) Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ Toxicol Chem 31:1396–1406.  https://doi.org/10.1002/etc.1825CrossRefPubMedGoogle Scholar
  17. 17.
    Escher BI, Aït-Aïssa S, Behnisch PA, Brack W, Brion F, Brouwer A, Buchinger S, Crawford SE, Du Pasquier D, Hamers T, Hettwer K, Hilscherová K, Hollert H, Kase R, Kienle C, Tindall AJ, Tuerk J, van der Oost R, Vermeirssen E, Neale PA (2018) Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. Sci Total Environ 628–629:748–765.  https://doi.org/10.1016/j.scitotenv.2018.01.340CrossRefPubMedGoogle Scholar
  18. 18.
    Leusch FDL, Chapman HF, Korner W, Gooneratne SR, Tremblay LA (2005) Efficacy of an advanced sewage treatment plant in southeast Queensland, Australia, to remove estrogenic chemicals. Environ Sci Technol 39:5781–5786.  https://doi.org/10.1021/es0484303CrossRefPubMedGoogle Scholar
  19. 19.
    Jarošová B, Bláha L, Giesy JP, Hilscherová K (2014) What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe? Environ Int 64:98–109.  https://doi.org/10.1016/j.envint.2013.12.009CrossRefPubMedGoogle Scholar
  20. 20.
    Pedrazzani R, Bertanza G, Brnardić I, Cetecioglu Z, Dries J, Dvarionienė J, García-Fernández AJ, Langenhoff A, Libralato G, Lofrano G, Škrbić B, Martínez-López E, Meriç S, Pavlović DM, Papa M, Schröder P, Tsagarakis KP, Vogelsang C (2019) Opinion paper about organic trace pollutants in wastewater: toxicity assessment in a European perspective. Sci Total Environ 651:3202–3221.  https://doi.org/10.1016/J.SCITOTENV.2018.10.027CrossRefPubMedGoogle Scholar
  21. 21.
    Escher BI, Allinson M, Altenburger R, Bain PA, Balaguer P, Busch W, Crago J, Denslow ND, Dopp E, Hilscherova K, Humpage AR, Kumar A, Grimaldi M, Jayasinghe BS, Jarosova B, Jia A, Makarov S, Maruya KA, Medvedev A, Mehinto AC, Mendez JE, Poulsen A, Prochazka E, Richard J, Schifferli A, Schlenk D, Scholz S, Shiraishi F, Snyder S, Su G, Tang JYM, van der BB, van der LSC, Werner I, Westerheide SD, Wong CKC, Yang M, Yeung BHY, Zhang X, Leusch FDL (2014) Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ Sci Technol 48:1940–1956.  https://doi.org/10.1021/es403899tCrossRefPubMedGoogle Scholar
  22. 22.
    Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D (2011) Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Res 45:2473–2484.  https://doi.org/10.1016/j.watres.2011.01.026CrossRefPubMedGoogle Scholar
  23. 23.
    Coes AL, Paretti NV, Foreman WT, Iverson JL, Alvarez DA (2014) Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods. Sci Total Environ 473-474:731.  https://doi.org/10.1016/j.scitotenv.2013.12.082CrossRefPubMedGoogle Scholar
  24. 24.
    Aymerich I, Acuña V, Ort C, Rodríguez-Roda I, Corominas L (2017) Fate of organic microcontaminants in wastewater treatment and river systems: an uncertainty assessment in view of sampling strategy, and compound consumption rate and degradability. Water Res 125:152.  https://doi.org/10.1016/j.watres.2017.08.011CrossRefPubMedGoogle Scholar
  25. 25.
    Petrie B, Barden R, Kasprzyk-Hordern B (2014) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3.  https://doi.org/10.1016/j.watres.2014.08.053CrossRefPubMedGoogle Scholar
  26. 26.
    Budde WL, JW Eichelberger TD, Behymer WL (1988). Method 525.2 determination of organic compounds in drinking water by liquid-solid extraction and capillary column gas chromatography/mass spectrometry revision 2.0Budde-Method 525.1 RevisionGoogle Scholar
  27. 27.
    Sambuy Y, Alloisio S, Bertanza G, Feretti D, Letasiova S, Mazzoleni G, Pedrazzani R, Caloni F (2018) Air, water and soil: which alternatives? Alternative models in environmental toxicology. Altex 35:254.  https://doi.org/10.14573/altex.1802121
  28. 28.
    Maertens A, Hartung T (2018) Green toxicology-know early about and avoid toxic product liabilities. Toxicol Sci 161:285.  https://doi.org/10.1093/toxsci/kfx243CrossRefPubMedGoogle Scholar
  29. 29.
    ISO. (2012). ISO 8692:2012(en), Water quality — fresh water algal growth inhibition test with unicellular green algaeGoogle Scholar
  30. 30.
    International Organization for Standardization (2007) Water quality – Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – Part 3: Method using freeze-dried bacteria. 11348–3. Geneva (CH)Google Scholar
  31. 31.
    International Organization for Standardization (2012) Water quality — Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — acute toxicity test. 6341. Geneva (CH)Google Scholar
  32. 32.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  33. 33.
    Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131.  https://doi.org/10.1038/nprot.2008.75CrossRefPubMedGoogle Scholar
  34. 34.
    Laaninen T (2019) Revision of the drinking water directiveGoogle Scholar
  35. 35.
    International Organization for Standardization (2018) Water quality – Determination of the estrogenic potential of water and waste water – Part 1: Yeast estrogen screen (Saccharomyces cerevisiae). 19040–1. Geneva (CH)Google Scholar
  36. 36.
    APHA, AWWA, WEF (2017) Standard methods for the examination of water and wastewater. E.W. Rice, R.B. Baird, A.D. Eaton, editors 23rd edn, Publisher: American Public Health Association, American Water Works Association, Water Environment Federation. Washington D.C.  ISBN: 9780875532875Google Scholar
  37. 37.
    Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res Mutagen Relat Subjdoi 113:173.  https://doi.org/10.1016/0165-1161(83)90010-9CrossRefGoogle Scholar
  38. 38.
    Tice R R, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi,H, Miyamae Y, Rojas E, Ryu J-C, Sasaki Y F (2000). Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206:221. https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-JCrossRefGoogle Scholar
  39. 39.
    Ma TH, Xu Z, Xu C, McConnell H, Valtierra Rabago E, Adriana Arreola G, Zhang H (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res Mutagen Relat Subj 334:185–195.  https://doi.org/10.1016/0165-1161(95)90010-1CrossRefGoogle Scholar
  40. 40.
    Cabaravdic M (2010) Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of cells to benzo(a) pyrene. Med Arh 64:215–218PubMedGoogle Scholar
  41. 41.
    Fiskesjö G (1995) Allium test. In: In vitro toxicity testing protocols. Humana Press, Totowa, pp 119–127.  https://doi.org/10.1385/0-89603-282-5:119CrossRefGoogle Scholar
  42. 42.
    Rank J, Lopez L C, Nielsen M H, Moretton J (2002). Genotoxicity of maleic hydrazide, acridine and DEHP in Allium cepa root cells performed by two different laboratories. Hereditas 136(1):13–18.  https://doi.org/10.1034/j.1601-5223.2002.1360103.xCrossRefGoogle Scholar
  43. 43.
    Cohen SM, Boobis AR, Dellarco VL, Doe JE, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Wolf DC (2019) Chemical carcinogenicity revisited 3: risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans. Regul Toxicol Pharmacol 103:100–105.  https://doi.org/10.1016/j.yrtph.2019.01.017CrossRefPubMedGoogle Scholar
  44. 44.
    Doe JE, Boobis AR, Dellarco V, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Wolf DC (2019) Chemical carcinogenicity revisited 2: current knowledge of carcinogenesis shows that categorization as a carcinogen or non-carcinogen is not scientifically credible. Regul Toxicol Pharmacol 103:124–129.  https://doi.org/10.1016/j.yrtph.2019.01.024CrossRefPubMedGoogle Scholar
  45. 45.
    Wolf DC, Cohen SM, Boobis AR, Dellarco VL, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Doe JE (2019) Chemical carcinogenicity revisited 1: a unified theory of carcinogenicity based on contemporary knowledge. Regul Toxicol Pharmacol 103:86–92.  https://doi.org/10.1016/J.YRTPH.2019.01.021CrossRefPubMedGoogle Scholar
  46. 46.
    Cohen SM, Arnold LL (2011) Chemical Carcinogenesis. Toxicol Sci 120:S76–S92.  https://doi.org/10.1093/toxsci/kfq365CrossRefPubMedGoogle Scholar
  47. 47.
    Ruch RJ, Trosko JE, Farber E (2001) Gap-junction communication in chemical carcinogenesis (multiple letters). Drug Metab Rev Taylor & Francis 33:117.  https://doi.org/10.1081/DMR-100000137CrossRefGoogle Scholar
  48. 48.
    Rosenkranz HS (2002) Exploring the relationship between the inhibition of gap junctional intercellular communication and other biological phenomena. Carcinogenesis 21:1007–1011.  https://doi.org/10.1093/carcin/21.5.1007CrossRefGoogle Scholar
  49. 49.
    El-Fouly MH, Trosko JE, Chang CC (1987) Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res 168:422.  https://doi.org/10.1016/0014-4827(87)90014-0CrossRefPubMedGoogle Scholar
  50. 50.
    Vanparys P, Corvi R, Aardema MJ, Gribaldo L, Hayashi M, Hoffmann S, Schechtman L (2012) Application of in vitro cell transformation assays in regulatory toxicology for pharmaceuticals, chemicals, food products and cosmetics. Mutat Res – Genet Toxicol Environ Mutagen 744:111–116.  https://doi.org/10.1016/j.mrgentox.2012.02.001CrossRefGoogle Scholar
  51. 51.
    OECD (2007) Detailed review paper on cell transformation assays for detection of chemical carcinogens. OECD Series on Testing and Assessment (31)Google Scholar
  52. 52.
    Urani C, Stefanini FM, Bussinelli L, Melchioretto P, Crosta GF (2009) Image analysis and automatic classification of transformed foci. J Microsc 234:269–279.  https://doi.org/10.1111/j.1365-2818.2009.03171.xCrossRefPubMedGoogle Scholar
  53. 53.
    Forcella M, Callegaro G, Melchioretto P, Gribaldo L, Frattini M, Stefanini FM, Fusi P, Urani C (2016) Cadmium-transformed cells in the in vitro cell transformation assay reveal different proliferative behaviours and activated pathways. Toxicol Vitr 36:71–80.  https://doi.org/10.1016/j.tiv.2016.07.006CrossRefGoogle Scholar
  54. 54.
    European Commission (2013) Recommendation 2013/179/EU on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. Off J Eur Union 210.  https://doi.org/10.3000/19770677.L_2013.124.eng
  55. 55.
    Pedrazzani R, Cavallotti I, Bollati E, Ferreri M, Bertanza G (2018) The role of bioassays in the evaluation of ecotoxicological aspects within the PEF/OEF protocols: the case of WWTPs. Ecotoxicol Environ Saf 147:742–748.  https://doi.org/10.1016/j.ecoenv.2017.09.031CrossRefPubMedGoogle Scholar
  56. 56.
    Pedrazzani R, Ziliani E, Cavallotti I, Bollati E, Ferreri M, Bertanza G Use of ecotoxicology tools within the environmental footprint evaluation protocols: the case of wastewater treatment plants. Desalin Water Treat. In pressGoogle Scholar
  57. 57.
    Gruiz K, Meggyes T, Fenyvesi É (2015) Engineering tools for environmental risk Management: 2. Environmental toxicology. CRC PressGoogle Scholar
  58. 58.
    Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546.  https://doi.org/10.1007/s11367-008-0038-4CrossRefGoogle Scholar
  59. 59.
    Papa M, Ceretti E, Viola GCV, Feretti D, Zerbini I, Mazzoleni G, Steimberg N, Pedrazzani R, Bertanza G (2016) The assessment of WWTP performance: towards a jigsaw puzzle evaluation? Chemosphere 145:291–300.  https://doi.org/10.1016/j.chemosphere.2015.11.054CrossRefPubMedGoogle Scholar
  60. 60.
    EEA (2011) Revealing the costs of air pollution from industrial facilities in EuropeEEA technical Report.  https://doi.org/10.2800/23502CrossRefGoogle Scholar
  61. 61.
    De Schryver AM, Brakkee KW, Goedkoop MJ, Huijbregts MAJ (2009) Characterization factors for global warming in life cycle assessment based on damages to humans and ecosystems. Environ Sci Technol 43:1689.  https://doi.org/10.1021/es800456mCrossRefPubMedGoogle Scholar
  62. 62.
    WHO (2013) WHO methods and data sources for global burden of disease estimates 2000-2011. Glob Heal Estim Tech Pap WHO 4:81Google Scholar
  63. 63.
    Bertanza G, Canato M, Laera G, Vaccari M, Svanström M, Heimersson S (2017) A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: techno-economic-environmental assessment. Environ Sci Pollut Res 24:17383.  https://doi.org/10.1007/s11356-017-9409-3CrossRefGoogle Scholar
  64. 64.
    Bertanza G, Canato M, Laera G (2018) Towards energy self-sufficiency and integral material recovery in waste water treatment plants: assessment of upgrading options. J Clean Prod 170:1206.  https://doi.org/10.1016/j.jclepro.2017.09.228CrossRefGoogle Scholar
  65. 65.
    Bertanza G, Baroni P, Canato M (2016) Ranking sewage sludge management strategies by means of decision support systems: a case study. Resour Conserv Recycl 110:1.  https://doi.org/10.1016/j.resconrec.2016.03.011CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Roberta Pedrazzani
    • 1
    • 2
    Email author
  • Pietro Baroni
    • 2
    • 3
  • Donatella Feretti
    • 2
    • 4
  • Giovanna Mazzoleni
    • 2
    • 5
  • Nathalie Steimberg
    • 2
    • 5
  • Chiara Urani
    • 2
    • 6
  • Gaia Viola
    • 4
  • Ilaria Zerbini
    • 4
  • Emanuele Ziliani
    • 7
  • Giorgio Bertanza
    • 8
  1. 1.DIMI – Department of Mechanical and Industrial EngineeringUniversity of BresciaBresciaItaly
  2. 2.MISTRAL c/o DSCS – University of BresciaBresciaItaly
  3. 3.DII – Department of Information EngineeringUniversity of BresciaBresciaItaly
  4. 4.Department of Medical and Surgical Specialities, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
  5. 5.DSCS – Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
  6. 6.DISAT – Department of Earth and Environmental SciencesUniversity of Milan – BicoccaMilanItaly
  7. 7.DICAr – Department of Civil Engineering & ArchitectureUniversity of PaviaPaviaItaly
  8. 8.DICATAM – Department of Civil Engineering, Architecture, Land, Environment and MathematicsUniversity of BresciaBresciaItaly

Personalised recommendations